UNIT - 1T

STEADY STATE ANALYSIS OF A.C CIRCUITS

Introduction

The resistance, inductance and capacitance are three basic elements of any electrical
network. In order to analyze any electric circuit, it is necessary to understand the following
three cases,

1) A.C. through pure resistive circuit.

2) A.C. through pure inductive circuit.

3) AC. through pure capacitive circuit.

In each case, it is assumed that a purely sinusoidal alternating voltage given by the
equation v = V_ sin (0 t) is applied to the circuit. The equation for the current, power
and phase shift are developed in each case.

A.C. Through Pure Resistance
R Consider a simple circuit consisting of

AW a pure resistance ‘R’ ohms connected
it 1i across a voltage v = V, sin o t. The circuit

~ is shown in the Fig. 4.1.

o According to Ohm’s law, we can find
¥ = VinSin ot the equation for the current i as,
Fig. 4.1 Pure resistive circuit

i=
. A
ie i = [R]sm{wt}
This is the equation giving instantaneous value of the current.

Comparing this with standard equation,

i = Insin{wt+ ¢
Vi 3
Im = —r and ‘—ﬂ

S0, maximum value of alternating current, i is [, = ERE while, as ¢ = 0, it indicates that

it is in phase with the voltage applied. There is no phase difference between the two. The
current is going to achieve its maximum (positive and negative) and zero whenever
voltage is going to achieve its maximum (positive and negative) and zero values.

In purely resistive circuit, the current and the voltage applied are in phase with
each other.

The waveforms of voltage and current and the corresponding phasor diagram is
shown in the Fig. 4.2 (a) and (b).

wi g

v=VY sin ol

i = Iy sin ot
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(a) (b)
Fig. 42 A.C. through purely resistive circuit
In the phasor diagram, the phasors are drawn in phase and there is no phase
difference in between them. Phasors represent the r.m.s. values of alternating quantities.
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Power

The instantaneous power in a.c. circuits can be obtained by taking product of the
instantaneous values of current and voltage.
P=vxl

= Vmsin((ot)xlmsinmt

= ﬁzl—"‘(l-coszmt)

e 2

cos (2 wt)

From the above equation, it is clear that the instantaneous power consists of two
components,

1) Constant power component (H’“—;—‘E‘-)

2) Fluctuating component [iﬂi-l—“l cos(2 mt}:l having frequency, double the frequency

of the applied voltage.

Now, the average value of the fluctuating cosine component of double frequency is
zero, over one complete cycle. So, average power consumption over one cycle is equal to

the constant power component i.e.—%5— .
p = Valn _Va In
N 2 V2 42

Pav = Vims % lms  watls

Generally, r.m.s. values are indicated by capital letters

Pow = Vx1 watts=1RR walts

The Fig. 4.3 shows the waveforms of voltage, current and power.

TN N LN

rd 1 r 1 ?
\ Viole
_,---h--r-'lq._ e "_.. - .-_.' i
Time 1
u *.N"‘l'--.-... 9 '.-.' “""h- t
v =V _sin wi i= 1,50 ot

Fig. 4.3 v, | and p for purely resistive circuit

A.C. Through Pure Inductance

Consider a simple circuit consisting of a pure

T inductance of L henries, connected across a voltage
L given by the equation, v = V sin w t. The circuit is
i3 — 1 shown in the Fig. 4.4.
Pure inductance has zero ohmic resistance. Its
@ internal resistance is =zero. The coil has pure
v =\, sin mt inductance of L henries (H).

Fig. 4.4 Purely inductive circuit
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When alternating current ‘i’ flows through inductance ‘L’, it sets up an alternating
magnetic field around the inductance. This changing flux links the coil and due to self
inductance, e.m.f. gets induced in the coil. This e.m.f. opposes the applied voltage.

The self induced e.m.f. in the coil is given by,

di

Self induced em.f.,, e = —LET

At all instants, applied voltage, v is equal and opposite to the self induced em.f, e

v = —-e=-(-Lg-:-)
v = L-g-:
Vmsinot = Lg—:
di = Y™ sinwtdt
i = Idi=fvT"‘sinwtdt =V_l:n(-cou::mt)

Vi 5 ( ) R (1: )
= - —8in|=-0t| ascos Ot = sin | = -t
(") 2

X Vi . T . (n o _n
1 = m—Lsm(o)l—i) assm(i wt)- sm((.ot 2)

where 1m=.._.'£m_!l!.‘.

where Xy, = wL=2nfLQ

The above equation clearly shows that the current is purely sinusoidal and having
phase angle of ~ 7 radians i.e. - 9(°. This means that the current lags voltage applied by
90°. The negative sign indicates lagging nature of the current. If current is assumed as a
reference, we can say that the voltage across inductance leads the current passing through
the inductance by 90°.

The Fig. 4.5 shows the waveforms and the corresponding phasor diagram

vi | |
/ ! V and 1 are rm.s. values
|
1
0 / 0 )I hv‘l
T 0
" -F'E::ﬂ
i 5
-l | lags by 90°)
E:Bﬂ_"_] -
(a) Waveforms {b) Phasor diagram

Fig. 4.5 A.C. through purely inductive circuit

In purely inductive circuit, current lags voltage by 90°.
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Concept of Inductive Reactance

We have seen that in purely inductive circuit,

Vin
Im = "XT
‘where X = wL=2xafLQ

The term, X, is called Inductive Reactance and is measured in ohms.
So, inductive reactance is defined as the opposition offered by the inductance of a
circuit to the flow of an alternating sinusoidal current.
It is measured in ohms and it depends on the frequency of the applied voltage.
The inductive reactance is directly proportional to
X the frequency for constant L.
X, e f, for constant L
So, graph of X; Vs f is a straight line passing
L through the origin as shown in the Fig. 4.6.
Key Point : If frequency is zero, which is so for d.c.
voltage, the inductive reactance is zero. Therefore, it is
Fig. 46 X_ Vs said that the inductance offers zero reactance for the d.c.

or steady current.

The expression for the instantaneous power can be obtained by taking the product of
Power instantaneous voltage and current.

Fmi;umw. f

P = wvxi

Ve sin wt x Iy sin [mt-;]

= = Vi ln sin (wt) cos (0t) assm(uwl—;]:-cus wt

P = -1""“2[’“ sin 2 @t) | as 2 sin ot cos ot =sin 2t

This power curve is a sine curve of frequency double than that of applied
voltage.
The average value of sine curve over a complete cycle is always zero.

F A
Pav = j -~S R sin oy d () =0
1]

The Fig. 4.7 shows voltage, current and power waveforms.

puwi

v P
’/\',_ e e
/ *qa = 9@’:2 /
o — = T = — = Time
|22 2 Zl
A L / )
"} L~ L~

Fig. 4.7 Waveforms of voltage, current and power
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when power curve is positive, energy gets stored in the
magnetic field established due to the increasing current while during negative power
curve, this power is returned back to the supply.

The areas of positive loop and negative loop are exactly same and hence, average

power consumption is zero.

Pure inductance never consumes power.

A.C. Through Pure Capacitance

Consider a simple circuit consisting of a

c pure capacitor of C-farads, connected across a
il voltage given by the equation, v = V,, sin @ t.
The circuit is shown in the Fig. 4.8.
iJ' 7i The current i charges the capacitor C. The
] instantaneous charge ‘q’ on the plates of the
O/ capacitor is given by,
v =V sin ot

Fig. 4.8 Purely capacitive circuit

Now, current is rate of flow of charge.
dg d .
i= ?H—E{C'Jmsmmt}

i= C?m%(sinmt}=(:\’.m:mmt

i= Vm_ sin(wt+-;£]

2
I. = ¥m
where " Xc
q=Cv where = _.}_5 1
v e ot Xc = gc=7mic ©
A m BN

The above equation clearly shows that the current is purely sinuscidal and having
pl'uumgleuf+%mdinmi.e.+gﬂ'.

This means current leads voltage applied by 90°. The positive sign indicates leading
nature of the current. If current is assumed reference, we can say that voltage across
capacitor lags the current passing through the capacitor by 90°.

The Fig. 49 shows waveforms of voltage and current and the corresponding phasor
diagram. The current waveform starts earlier by 90° in comparison with voltage waveform.
When voltage is zero, the current has positive maximum value.
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vi = Isin(ot + 3 ) ™~

2n

WV and | are r.m.s. values

(a) Waveforms {b) Phasor diagram

In purely capacitive circuit, current leads voltage by 90°.

Concept of Capacitive Reactance

We have seen while expressing current equation in the standard form that,

_ Vm
Im_ﬂf?
11
and xcz_ni‘m

The term X is called Capacitive Reactance and is measured in chms.
Xe So, capacitive reactance is defined as the
1 opposition offered by the capacitance of a
" ] circuit to the flow of an alternating sinusoidal
current.
X¢ is measured in ohms and it depends on
Frequency | the frequency of the applied voltage.

Fig. 410 X, Vs f The capacitive reactance is inversely
proportional to the frequency for constant C.

Xr:w—lf- for constant C

The graph of X Vs f is a rectangular hyperbola as shown in Fig. 4.10.
Key Point : If the frequency is zero, which is so for d.c. voltage, the capacitive reactance is
infinite. Therefore, it is said that the capacitance offers open circuit to the d.c. or it blocks d.c.

Power

The expression for the instantaneous power can be obtained by taking the product of
instantaneous voltage and current.

P = vxi=\f'm3in(mt}xlmsin{ml+ﬁ)-

2
= Vp I sin (@1) cos (@t) as sin (0t+3 ] = cos ot
Vo Im . . .
P=Tsml2mﬂ as2sinwtcos mt=sin2 wt

Thus, power curve is a sine wave of frequency double that of applied voltage. The
average value of sine curve over a complete cycle is always zero.

2
lv"‘zl"‘ sin2t) d (@8 =0,
0 www.Jntufastupdates.com
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The Fig. 4.11 shows waveforms of current, voltage and power. It can be observed from
the figure that when power curve is positive, in practice, an electrostatic energy gets stored
in the capacitor during its charging while the negative power curve represents that the
energy stored is returned back to the supply during its discharging. The areas of positive
and negative loops are exactly the same and hence, average power consumption is zero.

pv,i | v

Fig. 4.11 Waveforms of voltage, current and power

Pure capacitance never consumes power.

mp Example 4.1 : A 50 Hz, alternating voltage of 150 V (r.m.s.) is applied independently to
(1) Resistance of 10 @  (2) Inductance of 0.2 H  (3) Capacitance of 50 yF

Find the expression for the instantaneous current in each case. Draw the phasor diagram in
each case.

Solution : Case1:R=100Q

v = Vmsinwot

vm . ﬁvm
= J2x150 = 21213V
Vg 21213

In = | =710
= 21213 A

In pure resistive circuit, current is in phase with the voltage.
¢ = Phase Difference = 0°

i= lmsinwt

= Imﬂ»m(z'ﬂft}
i = 21.213sin (100 x 1) A
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Oe - -\ Thephasordmgrammsha}wnmﬂ\e
! Fig. 4.12 (a).
Fig. 4.12 (a)

Case 2: L=10z280
Inductive reactance, X, = wL=2xnfL
X, = 2m x50 x 02

= 6283 Q

Vm _ 21213
Im = E‘

= 337 A
In pure inductive circuit, current lags voltage by 90°.

¢ = Phase difference = - 90° --:,—nd
i = Insin (ot - 4¢)

i = 337sin (mnnag] A

0 \
90" =3 rad The phasor diagram is shown in the
[Tags V] Fig. 4.12 (b).
1
Fig. 4.12 (b)
Case 3 : C = 50 uF
P 1 1
Capacitive reactance, Xc = aC = IricC
1
= - = 66Q
Xe 2 x50x50x10-° 5
_ Ve _ 21213 _
In = % =66 - oBA

In pure capacitive circuit, current leads voltage by 90°. v
¢ = Phase Difference = 90° = -’25 rad
i

Im sin (0t + ¢)

i = 333 sin(lOOuH;)A

Il

. :
The phasor diagram is shown in the
°o_x Fig. 4.12 (c).
All the phasor diagrams represent r.m.s.
0 v values of voltage and current.
Fig. 4.12 (c)
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mmp Example 4.2 : A voltage v = 141 sin {314t +n / 3} is applied to
i) resistor of 20 ohms  ii) inductance of 0.1 Henry  iii) capacitance of 100 uF
Find in each case r.m.s. value of current and power dissipated.
Draw the phasor diagram in each case.

Solution : Comparing given voltage with v = V, sin (wt+6) we get,

Vi = 141vmdhmmv=vm=%=99.mzv

w = 314mdhmcef=%=5ﬂHz,B=%=ﬁﬂ“

Hence the polar form of applied voltage becomes, F
V = 99702 £60°V

R=20
1= ¥ = 272L0" . ao861 £60° A
_Vandl
o el o 1, = 4.9851 A
The phase of both V and I is same for pure
----- 5:"- FEERENSEAS resistive circuit. Both are in phase.
! P = VI = 99.702x 4.9851 = 497.0244 W
Fig. 4.13 (a) s
The phasor diagram is shown in the Fig. 4.13 (a).
Case 2 : L=01H
X, = oL=314x0.1=314Q
V] _99.702
L= 5o =374 =31752A

This is r.m.s. value of current. It has to lag the
Tlags V applied voltage by 90° in case of pure inductor.

i b Hence phasor diagram is shown in the Fig. 4.13 (b).
The individual phase of I is — 30°.
In polar form [ can be represented as

3.1752 £- 30° A.
1 Pure inductor never consumes power so power
Fig. 4.13 (b) dissipated is zero.
Case 3 : C = 100 pF
1 1
“ Xe= —x = m———— = 31.8471

TTeads V X oC  314x100x10-¢ e

by 96 V|  99.702
\\ \\w .. I=‘_c‘= 31.8471‘-‘-3-13“A

This is r.m.s. value of current.
It has to lead the applied voltage by 90° in
case of pure capacitor.
Fig. 4.13 (c) Hence phasor diagram is shown in the
Fig. 4.13 (c).
The individual phase of I is 150°. In polar form I can be represented as 3.1306 £+150°
A. Pure capacitor never consumes power and hence power dissipated is zero.
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A.C. Through Series R-L Circuit

L R Consider a circuit consisting of pure resistance
LN AMW— R ohms connected in series with a pure inductance
- of L henries as shown in the Fig. 4.14 (a).

1 The series combination is connected across a.c.
A supply given by v = V_ sinwt.
v =V, sin ot
Circuit draws a current I then there are two
Fig. 4.14 (a) Series R-L circuit  voltage drops,
a) Drop across pure resistance, Vp=I1xR
b) Drop across pure inductance, V; =1 x X where X; =2n fL

I = r.ms. value of current drawn

Vr , VL = r.ms. values of the voltage drops.

The Kirchhoff's voltage law can be applied to the a.c. circuit but only the point to
remember is the addition of voltages should be a phasor (vector) addition and no longer
algebraic as in case of d.c.

. V=VWVW+V (phasor addition)
. V = R+1X(
Let us draw the phasor diagram for the above case.

Key Point : For series a.c. circuits, generally, current is taken as the reference phasor as it is
common to both the elements.
Following are the steps to draw the phasor diagram :

1) Take current as a reference phasor.

2) In case of resistance, voltage and current are in phase, so Vy will be
along current phasor.

3) In case of inductance, current lags voltage by 90°. But, as current is
reference, V| must be shown leading with respect to current by 90°.

4) The supply voltage being vector sum of these two vectors V; and Vy
obtained by law of parallelogram.

From the voltage triangle, we can write,
V = J(VR)¥+(VL)? = J(R)Z + (Ix X)?

IR+ (XL)?

V=1Z

JR)Z+(X)? ... Impedance of the circuit.

The impedance Z is measured in ohms.

where Z

Vl. Y, B

-] |

- - | 0 — A
° Ve (in phase) Yn=iR
with |
Fig. 4.14 (b) Phasor diagram Fig. 4.14 (c) Voltage triangle

www.Jntufastupdates.com
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Impedance

Impedance is defined as the opposition of circuit to flow of alternating current. It is
cenoted by Z and its unit is ohms.

For the R-L series circuit, it can be observed from the phasor diagram that the current
lags behind the applied voltage by an angle ¢. From the voltage triangle, we can write,

V R . v X
tan ¢ = —= = ms¢=—,:-=i, sm¢=?"=—z'~'~

If all the sides of the voltage triangle are
divided by current, we get a triangle called
impedance triangle as shown in the Fig. 415.

Sides of this triangle are resistance R,
inductive reactance X; and an impedance Z.

From this impedance triangle, we can see
that the X component of impedance is R and is

Fig. 415 Impedance triangle given by:
R= Zcose
and Y component of impedance is X; and is given by,
XL = Zsing

In rectangular form the impedance is denoted as,

Z=R+jiXe Q

While in polar form, it is denoted as,

Z=12Z| 4¢ Q
12| = JRXE,  ¢= i [3]

Key Point: Thus ¢ is + ve for inductive impedance. Power and Power Triangle
The expression for the current in the series R-L circuit is,

where

i = Insin (0t - ¢) as current lags voltage.
The power is product of instantaneous values of voltage and current,
: P vxi=Vmsinwt x In sin (ot - ¢)
Vi Im [ sin (@t) . sin (wt~¢) ]

Vo L [cosu:n-e%s{mt-m]

= E‘E—Iﬂmﬁ-%mﬂmt—t}

Now, the second term is cosine term whose average value over a cycle is zero. Hence,
average power consumed is,

Vi I V. I
Pow = Mmﬁ :_mlim5¢
7 " n R
P = VIicosé¢ watt where V and I are r.m.s. values

If we multiply voltage equation by current I, we get the power equation.
VI= VgI+ Vi1

I = Vcosol + Vsin ¢l
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From this equation, power triangle can
be obtained as shown in the Fig. 4.16.

So, three sides of this triangle are,
1) VI, 2) VI cos ¢, 3) VI sin ¢

These three terms can be defined as
Vgl = Vicosd below.

Fig. 416 Power triangle

V1= Vising

¢

Apparent Power (S)

It is defined as the product of r.m.s. value of voltage (V) and current (I). It is denoted
byS.

5§ =VI VA

It is measured in unit volt-amp (VA) or kilo volt-amp (kVA).
Real or True Power (P)

It is defined as the product of the applied voltage and the active component of the

current.

It is real component of the apparent power. It is measured in unit watts (W) or
kilowatts (KW).

I P = Vicosé¢ watts
Reactive Power (Q)

It is defined as product of the applied voltage and the reactive component of the
current.

It is also defined as imaginary component of the apparent power. It is represented by
‘Q’ and it is measured in unit Volt-Amp Reactive (VAR) or kilo volt-Amp Reactive kVAR

Q = VIsin¢ VAR

Apparent power, S = VI VA

True power P V1cos ¢ W (Average Power)

V1sin ¢ VAR

Reactive power Q

Power Factor (cos ¢)

It is defined as factor by which the apparent power must be multiplied in order to
obtain the true power.

It is the ratio of true power to apparent power.

True Power  VIcos¢ _

Rower: fuchor s Apparent Power VI =0

The numerical value of cosine of the phase angle between the applied voltage and

the current drawn from the supply voltage gives the power factor. It cannot be greater
than 1.

It is also defined as the ratio of resistance to the impedance.

cos¢=%

Key Point : The nature of power factor is always determined by position of current with
respect to the voltage.

If current lags voltage power factor is said to be lagging. If current leads voltage
power factor is said to be leading.

So, for pure inductance, the power factor is cos (90°) i.e. zero lagging while for pure
capacitance, the power factor is cos (90°) i.e. zero but leading. For purely resistive circuit
voltage and current are in phase i.e. ¢ = 0. Therefore, power factor is cos (0°) = 1. Such
circuit is called unity power factor circuit.

Power factor = cos ¢

¢ is the angle between supply voltage and current.
Key Point : Nature of power factor always tells position of current with respect to voltage.

www.Jntufastupdates.com
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) Example 4.3 : An alternating current, i = 1.414 Sin (2 1 x 50 x t) A, is passed through
a series circuit consisting of a resistance of 100 ohm and an inductance of 0.31831 henry.
Find the expressions for the instantaneous values of the voltages across (i) the resistance,
(ii) the inductance and (iii) the combination.

Solution : The circuit is shown in the Fig. 4.17.
i=1414sin 27x50t) A

w=2n1x50 =2nf

— AWAN—m—y -  f=50Hz R=100Q L=03181H
il ot vt
v - Xe=2nfL
Fig. 4.17

= 27mx 50 x 0.31831 = 100 Q
i) The voltage across the resistance is,
vk = iR =1414sin (2 nx 50 t) x 100
= 1414sin Qx50 V
ii) The voltage across L leads current by 90° as current lags by 90° with respect to
voltage.
: vL = i X but leading current by 90°
= 1414 sin 2ntx 50t +90°) V
iii) From the expression of Vy we can write,
141.4

rms. valueof Vg = —— =100V, ¢

7 ®

Ve = 100 £0°=100+j0V

141.4
r.m.a.vulue:zf\ﬁ, o
Ve = 100 £90°=0+j 100 V
V = Vg + VL =100+ j0+ 0+ jl00
= 100 +j 100 = 14142 £45° V
K Ve = J2x14142 =200V

Hence expression of instantaneous value of resultant voltage is,

v = 200sin(2nx50t+45°)V

mp Example. 4.4 : A voltage e = 200 sin 100 n t is applied to a load having R = 200 Q in
series with L = 638 mH.

=100 V, & = 90°

L[]

Estimate :-

i) expression for current in i = I sin {(wtt¢) form ii) power consumed by the load iii)
reactive power of the load iv) voltage across R and L.

Solution :  The circuit is shown in the Fig. 4.18.

200
en=200V o V=—=141421 V (r.m.s.
7 (ram.s)

’xﬂ?ﬂ L w=100n . f=50Hz
2000 ad Xy = ol = 100 mx 638 %103
' = 200433 Q
200 sin 100xt Z=R+jXe=200+j200433 Q
Fig. 4.18 = 283.149 £ 45.06° Q
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oV MLa4L0
7  283.149 £ 45.06°

= 05 <£-45.06" A, current lags voltage by 45.06°.
& Im = J2x05=07071 A, ¢ = - 45.06°
i) i = Igsin (ot=¢)
= 0.7071 sin (100 = t - 45.06°) A
i) P = VI cos ¢ = 141.421 x 0.5 x cos (45.06°)
= 499474 =50 W
i) Q = VIsin ¢ = 141.421 x 0.5 x sin (45.06°)
= 50 VAR
iv) Vg = IR =05 x 200 = 100 V

Vo = I XL=05x200433 =10021 V

A.C. Through Series R-C Circuit

Consider a circuit consisting of pure resistance R-ohms and connected in series with a
pure capacitor of C-farads as shown in the

R c .
AW —  Fig41o.
L
ik v, e V, = I The series combination is connected across a.c.
& " © §  supplygivenby
v =V, sin wt Circuit draws a current 1, then there are two

Fig. 4.19 Series R-C circuit voltage drops,

a) Drop across pure resistance Vp = [ xR
b) Drop across pure capacitance Ve = 1 x X¢

where Xe = and I, Vg, Vi are the r.m.s. values

—l
2nf C
The Kirchhoff's voltage law can be applied to get,
V= Vp+Ve ... (Phasor Addition)
V = R+IXc
Let us draw the phasor diagram. Current 1 is taken as reference as it is common to
both the elements.
Following are the steps to draw the phasor diagram :-

1) Take current as reference phasor.

2) In case of resistance, voltage and current are in phase. 5o, V will be along current
phasor.

3) In case of purc capacitance, current leads voltage by 90° ie. voltage lags current by
90° so V¢ is shown downwards i.e. lagging current by 90°.

4) The supply voltage being vector sum of these two voltages Vi and Vi obtained by

completing parallelogram.
o Ve |
Ny
“t.
Ve v e

Fig. 4.20 Phasor diagram and voltage triangle
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From the voltage triangles,

V = J(VR)*+(Vc)? = (IR)? + (I Xc)?
= 1 J(R)?+(Xc)?
V=12Z
where Z = J(R)?+(Xc)? | is the impedance of the circuit.

Impedance

- — P = I' #a
It is measured in ohms given by Z = J (R + (Xe)? "rer® Xc= gzpc @ called capacitive reactance.

In R-C series circuit, current leads voltage by angle ¢ or supply voltage V lags current
I by angle ¢ as shown in the phasor diagram in Fig. 4.21.

From voltage triangle, we can write,

tan¢=$—nzk

Ve _ R
R*CSe=vy =

in ¢= £ - Xc
7 M=y =7

If all the sides of the voltage triangle are divided by the current, we get a triangle
called impedance triangle.

Two sides of the triangle are ‘R’ and ‘X’ and the third side is impedance ‘Z".

Fig. 421 Impedance triangle

The X component of impedance is R and is given by

R=Zcos ¢
and Y component of impedance is X and is given by
Xec=Z sin ¢

But, as direction of the X¢ is the negative Y direction, the rectangular
form of the impedance is denoted as,

Z =R-jX Q

While in polar form, it is denoted as,

where Z

=12Z|£-¢8

Z
where | Z |

R-jXce=|Z | <£-9
,,‘ R? + X%, ¢ = tan! {;1};‘:}

Key Point : Thus ¢ is — ve for capacitive impedance.
Power and Power Triangle

The current leads voltage by angle ¢, hence its expression is,
i = Insin (0t + ¢) as current leads voltage

The is the product of instan alues of vol and current.
power P ° wwwjn‘{u astupdatés.com 15



vixi=Vgpsinot x Iy sin (@t + ¢)
Vin Im [ sin (wt) . sin (wt + ¢) ]

A

_ Vi I.-,.cnst_ Vi Im

2 2

ms{-ﬂ-cos(!wu’]]

cos 2wt + ¢) ascos (-9 ) =cos ¢

Now, second term is cosine term whose average value over a cycle is zero. Hence,
average power consumed by the circuit is,

Pay

2

Valn gV In
22

cos @

P = VIicos ¢ walts

where V and I are r.m.s. values

If we multiply voltage equation by current I, we get the power equation,

VI = Vgl+ Vd

VI = Vicos¢ + Visind

Fig. 4.22

Hence, the power triangle can be shown as in

the Fig. 4.22.
Thus, the various powers are,
Q = Vising
Apparent Power, 5=VI VA

True or average power, P=V1cos ¢ W
Reactive Power, Q=VIsing VAR
Remember that, X; term appears positive in Z.

Z=R+jXu=]|2| 2 4% dis+ ve for inductive Z
While X term appears negative in Z.
Z=PR-jXc=|Z| £-¢ ¢is- ve for capacitive Z
For any single phase a.c. circuit, the average power is given by,

P = VIcos¢ walts

where V, I are r.m.s. values
cos & = Power factor of circuit

cos ¢ is lagging for inductive circuit and cos ¢ is leading for capacitive circuit.

Example 4.5 : Calculate the resistance and inductance or capacitance in series for each of
the following impedances, Assume the frequency to be 60 Hz.

i) (12 + j 30 ) ohms

ii) - j 60 ohms

Solution : i) 12+j30Q
Comparing the value of impedance with,

i) 0-je0Q
Comparing with,

iii) 20 £60° Q

Z

L

Z

iii) 20 £ 60° ohms.

and Xp =30 Q=2 niL

- R+jX., R=12Q

_ 3 _ 3 _

- W_an&ﬂ_m'ss mH
= R-jXe

= 00

- 600 =

B T 2nfC

- 44200 uF
T 2nxe0xe0 H

Converting to rectangular form, Z = 10 + j 17.32

Comparing with,

Z=R+jXL
R =100

XL = 1732 Q=12 nfL

1732

L = -7“ = 4594 mH
www.Jntufastupdates.com
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Example 4.6 : A resistance of 120 ohms and a capacitive reactance of 250 ohms are
connected in series across a AC voltage source. If a current of 0.9 A is flowing in the circuit
find out (i) power factor, (i) supply voltage (iii) voltages across resistance and capacitance
(fv) Active power and reactive power.

Solution : The circuit is shown in the Fig. 4.23.

R

C

AC.
voltage

Fig. 4.23
ii) Supply voltage V

iii) Vr
Ve

iv) P
Q

1202 -j2500

v

R=1200 X-=2502 I=09 A
. Z=R-jXc=120 - j250 Q = 277.308 £- 64.358°
Take current as reference.
S 1=0920%A
i) Power factor cos § = cos (- 64.358°) = 0.4327 leading

IxZ=[09 £0°] x [277.308 £~ 64.356°]
249.5772 £-64.358° V

I xR =09 x 120 = 108 V (magnitude)

I x Xc = 0.9 x 250 = 225 V (magnitude)

Active power = V I cos ¢ = 249.5772 x 0.9 x 0.4327
97.1928 W

Reactive power = VI sin ¢

249.5772 x 0.9 x sin (- 64.358°)

- 202498 VAR

The negative sign indicates leading nature of reactive volt-amperes.

A.C. Through Series R-L-C Circuit

Consider a circuit consisting of

A‘p\:w rﬂl’ﬂ-\ ﬁ resistance R ohms pure inductance L
Vg v, Ve henries and capacitance C farads
|‘= "_:.U - = connected in series with each other
| Y — l| 0 ljgun b across a.c. supply. The circuit is
I Ve 20 1 vy shown in the Fig. 4.24.
@ The a.c. supply is given by,
v =V _sin ol
v = V,, sin wt. The circuit draws
Fig. 4.24 R-L-C series circuit a current I. Due to current I, there

are different voltage drops across R,

L and C which are given by,
a) Drop across resistance Ris Vp=1R
b) Drop across inductance L is V; =1 X;
c) Drop across capacitance Cis V=1 X,
The values of I, Vg, V| and V. are r.m.s. values
The characteristics of three drops are,
a) Vg is in phase with current I.
b) Vy leads current I by 90°.
) V¢ lags current I by 90°.
According to Kirchhoff's laws, we can write,

v

= Vg + VL + V¢ ... Phasor addition
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Let us see the phasor diagram. Current I is taken as reference as it is common to all
the elements.

Following are the steps to draw the phasor diagram :
1) Take current as reference. 2) Vg is in phase with L

3) V|, leads current I by 90°. 4) V¢ lags current I by 90°.
5) Obtain the resultant of V; and V.. Both V| and V. are in phase opposition (180°
out of phase).

6) Add that with Vg by law of parallelogram to get the supply voltage.
The phasor diagram depends on the conditions of the magnitudes of V; and V. which
ultimately depends on the values of X and X.. Let us consider the different cases.

1. K> X

When X; > X, obviously, [ X; i.e. V| is greater than I X i.e. V.. So, resultant of V
and V- will be directed towards V, ie. leading current I. Current I will lag the resultant of
V. and Vi ie. (V- V).

The circuit is said to be inductive in nature. The phasor sum of Vg and (V| - V)
gives the resultant supply voltage, V. This is shown in the Fig. 4.25.

v
“tysv,
W B
'[VL‘Vc}j IB v
1 - - |
o A Vg 0 Va A
1lags V
Vey

Fig. 425 Phasor diagram and voltage triangle for X, > X,

From the voltage triangle, V = /(Vg)? + (VL. - Ve)? = J(IR)? + (IXL =1X¢)?

IJ(R)?+ (Xp - Xc)?

v
where Z

IZ

J R+ (Xp - X¢)?

So, if v =V sin wt, then i = I sin (0t - ¢) as current lags voltage by angle ¢

2 K< Xe

When X; < X, obviously, I X i.e. V, is less than I X i.e. V¢ So, the resultant of Vy
and V¢ will be directed towards V.. Current I will lead (V. - V).

The circuit is said to be capacitive in nature. The phasor sum of Vg and (V¢ - Vi)
gives the resultant supply voltage V. This is shown in the Fig. 4.26.
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o \‘\'VR
':U[: = UL] .

Vo=V

Vey

| leads V'

Fig. 4.26 Phasor diagram and voltage triangle for X, < X;

From the voltage triangle,

JOVR + (Ve-Vi)? = J(IR)?+ (IXc - 1X)?

VvV =
= IJ(R? +(Xe- X0 )?
- V=12Z
where Z = J(R)?+ (Xc-Xp)?

So, if v = V, sin ot, then i = [ sin (wt + ¢) as current leads voltage by angle ¢.

3. X = Xe

UL ‘i“c = "ulfL

[®) -
Ve=V
v(l

Fig. 4.27 Phasor diagram for X, = X;

V = IR

LS V=1Z

where Z =R
Impedance

When X; = X, obviously, V| = V.. 5o,
Vi, and V. will cancel each other and their
resultant is zero. So, Vp = V in such case
and overall circuit is purely resistive in
nature. The phasor diagram is shown in the
Fig. 4.27.

From phasor diagram, V = Vg

In general, for RLC series circuit impedance is given by,

Z=R+jX
where X = X = X¢ = total reactance of circuit
i Xy = Xe, X is positive and circuit is inductive.
I X <Xe, X is negative and circuit is capacitive.
I X=X, X is zero and circuit is purely resistive.
x _x R El -
fan ¢ = [ e "-‘], cos = 7 and Z = R+ (X¢ - Xo)?
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Impedance Triangle
The impedance is expressed as,

Z=R+jiX where X=X.-Xc
For X; > X, ¢ is positive and the impedance triangle is as shown in the Fig. 4.28 (a).

For X; < Xg Xp — X¢ is negative, so ¢ is negative and the impedance triangle is as
shown in Fig. 428 (b).
R

& —ve )
X=X, - X
Z (X, - Xg) =X z but negative
@ e a5 xL < Kf-
- _
(a) (b}

Fig. 4268 Impedance triangles

Inboth the cases, R = Zcos¢ and X=2Zsin¢
Power and Power Triangle
The average power consumed by the circuit is,

P.w = Average power consumed by R+ Average power consumed by L
+ Average power consumed by C
But, pure L and C never consume any power.
Piw = Power takenby R =R R=1(IR) =1Vg
But, Ve = V cos ¢ in both the cases
P = VIicosé¢W
Thus, for any condition, X; > X¢ or X; < X, the power can be expressed as,

P = Voltage x Component of current in phase with voltage

Key Point : The power triangle can be obtained by multiplying each side of impedance
triangle by I.

The power triangles are shown in the Fig. 4.29.

§=1'Z=\I
Apparent
O x=q
= Vising a=Ix
= Reactive powar = Vising
¢ {lagging) = Reaclive power
P = I'R = Vicosé (leading)
= Active power
(a) X_ > X (b) X, < X¢

Fig. 4.29
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Summary of R, L and C circuits

No. Circuit Impedance (Z) [} p.f. cos ¢ Remark
Polar Rectangular

1. | PureR R£L0°Q R+j0Q 0° 1 Unity p.f.

2. | Purel X, £90°Q 0+jX Q 20° o Zero lagging

3. | PurecC Xe £-90°Q | 0-)X. Q - 90° 0 Zero leading

4. | Series RL Zlz+¢¥Q R+jX Q 0°2£9£90°| cosg¢ Lagging

5. | series RC Zlz-¥0 R-jXe0 |—-90°2¢20° cosé Leading
X > X Lagging

6. | Seies RLC | |l £t ¥ Q :i;ific ¢ €os & | X, < X Leading
X, = X Unity

Example 4.7 : A series circuit consisting of 25 Q resistor, 64 mH inductor and 80 uF

capacitor, is connected to a 110 V, 50 Hz, single phase supply as shown in Fig. 4.30.
Calculate the current, voltage across individual element and the overall pf. of the circuit.
Draw a neat phasor diagram showing I, Vz,V;, Vc and V.

= 39.78 Q

R L C
— W\ T i}
25Q 64 mH 80 uF
¥
A&
110 volt, 50 Hz supply
Fig. 4.30
Solution : From Fig. 4.30,
R =250
XL = 2nfL=2nx50x64x10"% = 20.10 Q
Xe = 1 1

2nfC  2mx50x80x10-°

Z = R+jXL -jXc=25+j20.10-)39.78

110 £0°

Z~ 25-j1968 3181 Z-3820°

IR = (34580 £ 38.20°) (25) = 86.45 £ 3820° volts
I(j Xv) = (3.4580 £ 38.20°) (j2010)

= (34580 £3820°) (2010 £90°) = 69.50 £128.2° volts

I (~jXc)= (34580 £38.20°) (-j39.78)

= (34580 £3820°) (3878 £-90°) = 13410 £-51.9° volts

Z = (25-j1968) Q
[ - Vv_ 11020
I = 3.4580 £38.20° A
I = 3.4580 A
Vg =
Vi =
Ve =
V = 110 £0° volts
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Overall pf, cos ¢ = cos 3820° = 0.7858 leading.

Fig. 4.30 (a)

A. C. Parallel Circuit

A parallel circuit is one in which two or
more impedances are connected in parallel across
the supply voltage. Each impedance may be a
separate series circuit. Each impedance is called
branch of the parallel circuit.

The Fig. 4.33 shows a parallel circuit consisting
of three impedances connected in parallel across
an a.c. supply of V volts.

V volts

Fig. 433 A.C. parallel circuit Key Point: The voltage across all the impedances is
same as supply voltage of V volts.

The current taken by each impedance is different.

Applying Kirchhoff's law, =0+ +13 ... (phasor addition)
V. vy VvV ¥V
2 5 4 Zs
1 1 1 1
== = == b ==
Z Z4 Z, 2Zj

where Z is called equivalent impedance. This result is applicable for ‘n’ such
impedances connected in parallel.

Following are the steps to solve parallel a.c. circuit :

1) The currents in the individual branches are to be calculated by using the relation

while the individual phase angles can be calculated by the relation,

X1 Xa X

g = R

2) Voltage must be taken as reference phasor as it is common to all branches.

3) Represent all the currents on the phasor diagram and add them graphically or
mathematically by expressing them in rectangular form. This is the resultant
current drawn from the supply.

4) The phase angle of resultant current I is power factor angle. Cosine of this angle
is the power factor of the circuit..
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Concept of Admittance

Admittance is defined as the reciprocal of the impedance. It is denoted by Y and is

measured in unit siemens or mho.
Now, current equation for the circuit shown in the Fig. 4.34 is,

—

+ 1 +1;

(3 9x(3) o)

VY; + Vz + VY,

Yi+Y2+Ys

—
"

124

Y

where Y is the admittance of the total circuit. The three impedances connected in
parallel can be replaced by an equivalent circuit, where three admittances are connected

in series, as shown in the Fig. 4.34.

Iy 21
14 I3 L, | I

A e
(& o
v v

Fig. 4.34 Equivalent parallel circuit using admittances

Components of Admittance
Consider an impedance given as,

Z=RzjX
Positive sign for inductive and negative for capacitive circuit.
. 1 1
Admittance Y = ‘Z = 'ﬁ'-:l:]_x
Rationalising the above expression,
RFjX _RFjX
R+ jX)(RFjX) R2+X2

Y

(R Y3 X J.R .. X
) Tl z Tz

Y=G T B

In the above expression, G=ﬂﬂnductanc¢=~;—z
and B =8 tance = =
= Suscep =3

Conductance (G)

It is defined as the ratio of the resistance to the square of the impedance. It is

measured in the unit siemens.
Susceptance (B)

It is defined as the ratio of the reactance to the square of the impedance. It is

measured in the unit siemens.
www.Jntufastupdates.com
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imp Example 4.9 : Two impedance Z, = 5 - j13.1 Q and Z, = 8.57 + j6.42 Q are connected

in parallel across a voltage of (100 + j200) volts.

Estimate :-

i) branch currents in complex form ii) total power consumed,

Draw a neat phasor diagram showing voltage, branch currents and all phase angles.
Solution : The circuit is shown in the Fig. 4.36.

V =100 +j 200 = 223.607 £ 63.43° V

Zy=5=7131= 14021 £ -69109° Q

I1
>N
_ Z; =857 +)642=1071 £ +36.83° Q
Z, ) LoV 223.607.£63.43°
: 2 ' 1= 7 T T4.021269.109°
= 15948 £ 132.539° A
100 + 200 V
Fig. 4.36 = -10.782 +j11.75 A

V _ 223.607 £63.43°
Z,  10.71.2+36.83°

Iz

= 20878 £ 26.6° A = 18.668 + j 9.3483 A

Ir = I +Iz = - 10.782 + j 11.75 + 18.668 + j 9.3483
= 7.886 +j21.0983 A = 225239 £ 69.5° A

¢t = Angle between V and Ir
= 695 - 6343 = 6.075° leading

Pr = VIr cos ¢r = 223.607 x 22.5239 x cos (6.075)
= 5008212 W

The phasor diagram is shown in the Fig. 4.37.

immp Example 4.11 : Find the current through 4 £ resistor by using loop current method.

S50 40 20

50.0°V 2Q _l._wjzn } 26.25.-66.8°V
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Solution : The various loop currents are shown in the Fig. 4.39 (a),

Fig. 4.39 (a)
Loop 1, —50 -2l + 212+ 50 £0° = O
h(5+j2) -1;j2 = 50 £0° e (1)
Loop 2, -4h-b-2)+b(-j)-2h+j2hL =0
({2 +RE49-LGR =0 - (2)
Loop 3, -~ 203 + 2625 £-668° -1 (42) + (- j2) = O
oo B2 + 1 (2-72) =2625 £ - 66.8° e (3)
5+i2 -2 0
D=2 -4 -j2
0 2 2-j
= —42-72) 5 +2) - 42 - 2) - 45 + }2)
= =84 +j24
5+j2 50 £0° 0
and D: = | j2 0 -2
0 2625/-668° 2-j2

= —2(2-72)50 Z0P + 2 (5 + j2) (26.25 £ - 66.8°)

= [2Z£-90°x 2828 £-45° x50 £0°] + [2 £90° x 5.385
£ 21.8° % 2625 £ - 66.8]

= —199.969 - j199.969 + 199.9 + j199.9 = 0

L = %=lﬁ=mrmt&u‘nughiﬂ

i Example 4.12 : Use the nodal analysis to find the value of V, in the circuit shown in the
Fig. 4.40 such that the current through (2 + j3) Q impedance is zero.

Fig. 4.40
Solution : The various node voltages and currents are shown in the Fig. 440 (a).

50Vl Vols 40

Fig. 4.40 (a)
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At node 1,

~h-L-L=0

R

But current through (2 + j3) Qie.

0

[V-30£C1 Vi _,
5 5

Vi 3040 Vi _,
i5 5 5/Z9°
Vi[02+022£-%°) =62-(F
v, = 840 6£0°
' T 02-702 T 02828 Z-45
= 21216 £+ 45 V
At node 2, L-L-Is=0
ie. L+ls=0 asly =0
V: Va-V, _
A S
1.1 vV, _
VQ[E'I'E}'T—G

04166 V;-025V, =0

V. = 1.667 V3

mmp  Example 4.13 :
shown in the Fig. 4.41.

50 410

50.20°V t:)

(1)

Use the node voltage technique to obtain the current | in the network

240

50.290°V

Fig. 4.41

As I; = 0, V, and V, must be equal.

Vi=Vi=212.245"V

)

Ve = 1.667 x 21.2 £ + 45° = 3533 A45° V

Solution : The various currents and node voltages are shown in the Fig. 4.41 (a).

40

240

Fig. 4.41 (a)
At node 1, -Lhi-k-I=0 ielhj+L+L=0
Vi=-50£00 Vi Vi=-Vy _
A g =0
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1 1.1 17

Vi [0.45 - j0.5] - V2 (0.25) = 10
At node 2, L-L-Is=0

Vi-Va Vi _Va-S049°

1 1 .11 o
i [E]* "'2[‘1‘ i'i] =B LN

025 Vi + V2 [-075-j05] = -j25
For calculating I = I, , only V, is required.

o |045-j05  -0.25
1 025  -0.75-j05
= - 03375 + j 0.375 — j 0.225 — 0.25 + 0.0625
= - 0525 +{0.15 = 0.546 £ 164.05°
10 -0.25 .
D = |--;:?.5 -u,?5-in,5|=_?'5_'5-]6'25

= =75-j11.25 = 1352 £~ 123.69°

D _1352£-123.69° _ .
Vi = B = 05w ziciose - 2A762 L4036°V

I = %-H'?’fz‘#'w-mz—m-a
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UNIT — 11
COUPLED CIRCUITS & RESONANCE

Magnetically Coupled Circuits

When' the two circuits are placed very close to each other such that a magnetic flux
produced by one circuit links with both the circuits, then the two circuits are said to be
Magnetically Coupled Circuits.

A wire of certain length, when twisted into coil becomes a basic inductor. If a current
is made to pass through an inductor, an electromagnetic field is developed. A change in
the magnitude of the current, changes the electromagnetic field and hence induces a
voltage in coil according to Faraday’s law of electromagnetic induction.

When two or more coils are placed very close to each other, then the current in one
coil affects other coils by inducing voltage in them. Such coils are said to be mutually
coupled coils. Such induced voltages in the coils are functions of the self inductances of
the coils and mutual inductance between them. Let us study concept of self induced e.m.f.
and mutually induced e.m.f.

Self inductance:
Consider a coil having N turns carrying current i as shown in the Fig. 2.1.

Due to the current flow, the flux ¢ is produced in the coil. The flux is measured in Wb
(weber). The flux produced by the coil links with the coil i
itself. Thus the total flux linkage of the coil will be (N¢) *
Wh-turns. If the current flowing through the coil changes, the '
flux produced in the coil also changes and herice flux linkage \
®
also changes.

According to Faraday’s law, due to the rate of change of
flux linkages, there will be induced em.f. in the coil. This ~
Fig. 2.1
phenomenon is called self induction. The e.m.f. or voltage induced in the coil due to the
change of its own flux linked with it, is called self induced e.m.f.

According to Lenz's law the direction of this induced e.m.f. will be so as to oppose the
cause producing it. The cause is the current I hence the self induced e.m.f. will try to set
up a current which is in opposite direction to that of current I. When current is increased,
self induced e.m.f. reduces the current tries to keep it to its original value. If current is
decreased, self induced e.m.f. increases the current and tries to maintain it back to its
original value. So any change in current through coil is opposed by the coil.

This property of the coil which opposes any change in the current passing through it
is called Self Inductance or Only Inductance.

From the Faraday's law of electromagnetic induction, self induced e.mf. can be

expressed as
d¢

v = - N—

dt
Negative sign indicates that direction of this e.m.f. is opposing change in current
due to which it exists.

The flux can be expressed as,
¢ = (Flux/ Ampere )x Ampere =%xl

Now for a circuit, as long as permeability W' is constant, ratio of flux to current
(ie. BfH) remains constant.
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Rate of change of flux = i:ix Rate of change of current
de _ o dl
dt 1 dt
_ N2 d
v = NI :
_ (Ng)dI
v = (T

The constant —b-i—* in this expression is nothing but the quantitative measure of the

property due to which coil opposes any change in current.
So this constant -If%ﬂ is called coefficient of self inductance and denoted by L'

N¢

L——-I

It can be defined as flux linkages per ampere current in it. Its unit is henry (H).
A circuit possesses a self inductance of 1 H when a current of 1 A through it
produces flux linkages of 1 Wb-turn in it.

dl
v = _La_t volts

Expressions for Coefficient of Self Inductance (L)

~ N¢
L=
M.M.E. NI
But ¢ = Reluctance S
M-I
L =935

N? )
L = <5 henries
1

MNow S =
pa

N2

(55)

L = Nzlpa =N1|.|.;,|.|.,a | J

L =

where I = Length of magnetic circuit

Area of cross-section of magnetic circuit
through which flux is passing.
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Example 1 : If a coil has 500 turns is linked with a flux of 50 mWb, when carrying a
current of 125 A. Calculate the inductance of the coil. If this current is reduced to zero
uniformly in 0.1 sec, calculate the self induced e.m.f. in the coil.

Solution : The inductance is given by,

_ N¢
2
where N =500, ¢=50 mWb = 50x10° Wb, I=25A
500 %50 x10*
dl
v = "'L-a-t-
[Final value of I =Initial value of I]
. :
Time
v = —02x(9:611-2-5.) = 250 volts

This is positive because current is decreased. So this ‘v' will try to oppose this
decrease, means will try to increase current and will help the growth of the current.

Mutually Induced E.M.F. and Mutual Inductance (M)

If the flux produced by one coil links with the other coil, placed sufficiently close to
the first coil, then due to the change in the flux produced by first coil, there is induced
em.f. in second coil. Such induced emf. in the second coil is called mutually induced
e.m.f.

Consider two coils which are placed very close to each other as shown in the Fig.

Let coil 1 has N, turns, while coil 2 has N, turns. The current flowing through coil 1
is i;. Due to this current, the flux produced in coil 1 is ¢,. The part of this flux links with

coil 2. This flux is called mutual flux. : =™~ v Mutual flux 6,

It is denoted by ¢,, as it is a part o -H:—J—,’,H \ o +
flux ¢, linking with coil 2. When current [0y
through coil 1 changes, the flux produced Ly ! L, v,
in coil 1 ie. ¢, changes. Thus flux g
associated with coil 2 ie. ¢, changes. So Col 1} w~-" /| Coil2
according to the Faraday's law, there will - te- o -
be induced e.m.f. in coil 2. Fig.

Magnitude of Mutually Induced E.M.F.
Let N, = Number of turns of coil 1

N, = Number of turns of coil 2
I, = Current flowing through coil 1
¢, = Flux produced due to current I, in webers.
.~ ¢, = Flux linking with coil 2
According to Faraday's law, the induced e.m.f. in coil B is,

do,

V2 = Nagy
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Negative sign indicates that this em.f. will set up a current which will oppose the
change of flux linking with it.

Now ¢, = %2-)-:]1

If permeability of the surroundings is assumed constant then ¢, < I, and hence ¢, /I,
is constant.

Rate of change of ¢, = ?—1.&: Rate of change of current I,
1
d¢; _ ¢, df,
dt 1, dt
¢, dI,
W = =y
2 2T, dt
vy = (Nats)dl
: I, )dt
N, o, ). .. )
Here I is called coefficient of mutual inductance denoted by M.
1
_ L
\-"2 = - T VD]tE

Coefficient of mutual inductance is defined as the property by which emf. gets
induced in the second coil because of change in current through first coil.
Coefficient of mutual inductance is also called mutual inductance. It is measured in
henries.
Coefficient of Coupling or Magnetic Coupling Coefficient (k)

Consider two coils having self inductances L; and L, placed very close to each other.
Let the number of turns of the two coils be N; and N, respectively. Let coil 1 carries
current i; and coil 2 carries current i,.

Due to current i;, the flux produced is ¢, which links with both the coils. Then from
the previous knowledge mutual inductance between two coils can be written as

M = Nifan - (1)

L

where ¢§,, is the part of the flux ¢, linking with coil 2. Hence we can write, $,; =k, ¢,.
1
Similarly due to current i,, the flux produced is ¢, which links with both the coils.
Then the mutual inductance between two coils can be written as
M = Nafi .. 3
iy _
where#u mhpﬂﬂﬂf&l&ﬂlﬂ#: hrlhngmﬁlmillemmth‘]z‘kz*z.
. M = Na(kada) . (@)

12

Multiplying equations (2) and (4),
MZ = Ni(k; ;) Nj(k:9,)
iy iy

o e

iy iy
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= Self inductance of coil 1 = L,
—=—= = Self inductance of coil 2 = L,

kikyLy Ly
JRk
KyTilz

u..FH.|_-?n
zl,.2 & "F e

n

where k is called coefficient of coupling.
M

g

w (5)

.. (6)

mmp Example 2 : The number of turns in two coupled coils are 600 and 1200 respectively.
When a current of 4 A flows in coil 1, the total flux in coil 1 is 0.5 mWb and the flux
linking coil 2 is 0.4 mWb. Determine the self inductances of the coils and mutual inductance

between them. Also calculate coefficient of coupling.
Solution :

For coil 1, N; = 600
i, = 4A
¢, = 05 mWb
_ Nty _ (600) (0.5x 107%)

= 0.075 H
1y 4 07

The self inductance of a coil is directly proportional to the square of the

number of turns ie. L o< N,

L _ N
L, N3
(N, (1200Y? B
L-1 - (“ﬁ] .Ll ] (m] {ﬂ.[}?fl}— l].3 H
The flux linking with coil 2 is ¢,, = 0.4 mWb
M = N2‘¢2I

L

(1200)x (0.4% 10~ 3)

4
= 012 H
Hence the coefficient of coupling is given by,
M 0.12

k =

JLL,  J0075) 03
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Dot Conventions

The sign of mutually induced voltage depends on direction of winding of the coils. But
it is very inconvenient to supply the information about winding direction of the coils.
Hence dot conventions are used for purpose of indicating direction of winding. The dot

conventions are interpreted as below :
1. If a current enters a dot in one coil, then mutually induced voltage in other coil

is positive at the dotted end.

2. If a current leaves a dot in one coil, then mutually induced voltage in other coil

is negative at the dotted end.
Consider two magnetically coupled coils L, and L, wound on same core. Let current
through coils L; and L, be i; and i, respectively. All the possible combinations of the dot
convention between the magnetically coupled coils are as shown in the Fig. 2.4 (a), (c), (e)
and (g). The equivalent circuits of all possible dot convention are as shown in the

Fig. 2.4 (b), (d), (f) and (h) respectively.

Consider a magnetically coupled circuit with dots placed as shown in the Fig. 2.4 (a).
Both the currents, i; and i, are entering the dotted terminals. Hence according to the dot
convention, the mutually induced e.m.f. in both the coils has the polarity same as self

i M i
PRI WS TP
L L ]
vy Ly L, V2
(a)

i M R
+ @ Vs

L ]
V‘ L‘g ELZ V2
L ]
i B
(c)
. M .
+© h 25N 2 0 4+
k3
V1 L«‘g ELz Vz
L ]
S i
(e)
i i
. 1 /"""'-. F] .
vy L1§ g'—: Vg

Fig. 2.4 Magnetically coupled circuits and equivalent

(a)

+0 0+
L L,
V’ V2
di di
el et |
" dt - dt
s P
(b)
iy iy
+© —— &
L ™
vy \/]
di di
-2 peca |
M dt M dt
o -
(d)
iy ip
+ O -0 4
Ly L,
vy V2
di di
-2 o) |
M dt M dt
— °' ° -
(f
i iy
+ O -—0 4
Ly L;
2 vy
di di
-2 =1
- dt dt
o -
(h)

circuits with different dot conventions
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induced em.f. in respective coil. The equivalent circuit is as shown in the Fig. 2.4 (b).
Applying KVL, the network equations of the equivalent circuit can be written as :

di, di,

"l.'r-l = Ll ?t" + M —dT-' T (1)
di, di
va = Ly -+ M . (2)

Now consider magnetically coupled circuit as shown in the Fig. 2.4 [c} with dot placed
at lower terminal of coil L,. Hence current i, enters through dotted terminal of L, while
current i, leaves through dotted terminal of L,. So according to dot convention, the
polarity of mutually induced em.f. in L, due to i, in L, will be opposite to that of self
induced e.m.f. in coil L;. Also the polarity of mutually induced e.m.f. in coil L, due to the
current i; in coil L; will be opposite to that of self induced e.mf. in coil L,. The
equivalent circuit is as shown in the Fig. 2.4 (d). By using KVL, the network equations can
be written as,

- d.]'L dl"] R
vi = L at Mﬂdt . (3)
d.|1 L'l'l
vy = Ly—2-M— . (4)

For the equivalent circuit shown in the Fig. 24 (f). Applying KVL, the network
equations can be written as,

di di
di di
vy = L—2-M— . (6)

For last possible combination, both the dots are placed at lower terminals of coils L,
and L,. Also both the currents leave dot as shown in the Fig. 2.4 (g). The equivalent
circuit is as shown in the Fig. 2.4 (h). By applying KVL, the network equations can be
written as,

L

di di

vy, = Ll 1 l:l: - (?}
di di

Vz = Lz d: -d-_-‘i-];r i [s]

Uptill now we have discussed the coupled circuits in which two coils are magnetically
coupled. But practically we may have to analyze a network with several windings.

The analysis of multiwinding inductor networks can be carried out for each pair of
windings using same dot convention. In case of multiwinding inductor networks, the
relationship between each pair of windings is represented by different forms of the dots
such as @ , A , ® , % etc. The analysis of such multiwinding networks is illustrated in
Example 2.4 and Example 2.5.

mmp Example 3 : Calculate effective inductance of the circuit shown (Fig. 2.5) across
terminals a and b.

M=2H
c/
a o——uo
4H
5H
3H o
b O M=25H
Fig. 2.5
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Solution : Assume that current 'i' is

. . . . M=2H
flowing in series circuit and voltage _ .‘..--'
developed across terminals a and b is shown a j
in following Fig. 2.5 (a). ‘1‘ H

4

Applying KVL for the above circuit. The H 5H
current flowing through all the coils is same l aH i}
e 'i. b Ll M=25H
Fig. 2.5 (a)

While writing the equations follow the
convention that the current entering in the
dot of one coil produces positive at the dotted end of the another coil while the current
leaving from the dotted end of one coil produces the negative at the dotted end of the
another coil.

di di di di di di di

-434-IE*EE+EE*2.EE'3E—'2.EE+V=D
di di
L —— 13'&; = Lel-rd'—t'

Effective inductance across terminals a and b is L
Ly = 13H
Inductive Coupling in Series

When two inductors having self inductances L, and L, are coupled in series, mutual
inductance M exists between them. Two kinds of series connection are possible as follows.

Series Aiding
In this connection, two coils are connected in series
such that their induced fluxes or voltages are additive
in nature. :
Here currents i, and i, is nothing bul current i
which is entering dots for both the coils.

Self induced voltage in coil 1 = v, = ]_ng_i
Self induced voltage in coil 2 = v, = L:% Fig. 2.8

Mutually induced voltage in coil 1 due to change in current in coil 2 = v =—Mg—:

Mutually induced voltage in coil 2 due to change in current in coil 1 = v = —M—-—
Total induced voltage = v+ v,+ v| + v;
di
= —(L g+ d+Md+Mdt]

di
- + L +2M) 3

If L is equivalent inductance across terminals a-b then total induced voltage in single
inductance would be equal to - L ; g—: Comparing two voltages,

L

ar = Ly +Ly +2M

www.Jntufastupdates.com



Series Opposing

In this connection, two coils are connected in such a
way that, the induced fluxes or voltages are of opposite
polarities.

Here i; and i, is same series current 'i' which is
entering dot for coil L and leaving dot for coil L,.

di

dt

di Fig. 2.9
2dt

Self induced voltage incoil 1 = =L
Self induced voltage in coil 2 = - L
Mutl.tallymducedvaItagemmillduetudungeinmrrmtinmil‘!:v{=+M$

Also Mutually induced woltage in coil 2 due to change in current in

. . di
coil 1 =v,=+M 3
Therefore total induced voltage = v, + v, +v] + v}

di di di di
— _LIE*LIE*_ME*‘M_

di
=(L +L-2M) 3

If L is equivalent inductance across terminals a and b then total induced voltage in
single inductance would be equal to - Ly &I Comparing two voltages,

Inductive Coupling in Parallel

When two inductors having self inductances L, and L, are coupled in parallel, we
have two kinds of connections as follows.

Parallel Aiding
Consider parallel coupling of two inductors as shown in Fig. 2.10.
i Applying Kirchhoff's voltage law to both

+ T - L™ . loops, we get,
oL N —joL, i, —joMi, +v=0
' " 2 —j0L, i, ~joMi, +v=0
_l iev=joL i +joMi, ... (1)
Fig. 2.10 v=jol, i, +joM i, 2

We have, joL, i +joM- i, = jolL,- i, +joM-j
But =i+ i,
ie. 1, = i=- 1,

Putting value of i, in above equation, we get

joL, (i-1,) +joM i

joL, i +jo M@i-i)

joi (L, + L, -2M) = joi (L, - M)
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_ L,-M ],
T AL -2

L,-M
L,+L,-2M

Similarly, Iy

Putting values of i, and i, in equation (1), we get,
[ L, (L, -

M)

i

M{L,-M]Ji

v o= ji

-Lle =L,

L+L,-2M L, +L,-2M

v = jo

v = jo| k2

M+L,M—M1}i

L, +L,-2M

M= |
M] -

If L is effective inductance of parallel combination then

v = joLg-i

Comparing equations (3) and (4) we have

LILE_
L, +L,-2M

Lcl'l' =

Parallel Opposing

Consnder two inductors connected in parallel as
Applyin,

f -Z/\Q:

shown in Fig. 2.11.
g KVL to both loops, we get,

joL, i, +joMi, +v=0

i, +joMi, +v=0

v '-1 .
" -joL,
) e joL, i, —joMi,=v
Flo- 211 jOL, i, -joMi, = v
We have, joL, i, —joMi, = joL,i,-joMi,
But i = i+ i,

15

Substituting value of i, in above equation we have,

joL, i, +jo M(i-i)
joi, (L, + L, + 2M)

L

1

Similarly,

Putting values of i, and i, in equation (5) we get,

joL, (i-1,) -joM i,
ji (L, + M)

L,+L,+2M

i [ L, +M ]

L, +M .
L, +L +2M

v = o[ L@atM M M ]
S PIT L, yM AL e
_ ,m'l.,L2+L, M-L, M-M?|.
b L, +L,+2M :
= [ il
=1 I-,+L,+2M
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If L is effective inductance of parallel combination,
v = joLg-i v (8)

Comparing equations (7) and (8) we have,

Lo Ll -M
" L+L,+2M

mmp Example @ If a coil of 800 uH is magnetically coupled to another coil of 200 pwH. The
coefficient of coupling between two coils is 0.05. Calculate inductance if two coils are
connected in,

(i) Series aiding (i) Series opposing (iti) Parallel aiding (iv) Parallel opposing
Solution : The mutual inductance between two coils is given by
M = k- JL, L, =(005),/(800x10~¢) (200x10-6)

= 20puH
Let the effective inductance for magnetically coupled coil be L.
(i) Series aiding : L=1L+L,+2M
= (800%10-°)+(200x10-%)+(2x20x10°)
= 1040 pH
(ii) Series opposing : L=L+L,-2M
= (800x10-%)+(200x10"%)-(2x20x107%)
= 960 uH
z _ LL,-Mm?
(iii) Parallel aiding H L= m
_ (800x107% x200x10-%)-(20x10~°)?
- 960x10~5
01596x10~°
= —— = 166.25
960x10~° uH
: N _ LiL,- M?
(IV) Parallel opposing : L = m
_ (800107 x200x10-%)=(20x10~%)?
- 1040 x10-°
_ 01596x10-°
"~ 1040x10-%
= 153.46 pH
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RESONANCE

Introduction:

Electrical resonance occurs in an electric circuit at a particular resonant frequency when
the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the
impedance between the input and output of the circuit is almost zero

SERIES RESONANCE
A L c
NS TR {1

v=V,sin wt

Series circuit

Resonance is a very important phenomenon in many electrical applications. The study of resonance is very
useful in the telecommunication field. A circuit containing reactance is said to be in resonance 1f the voltage
across the circuit 1s in phase with the current through it. At resonance, the circuit thus behaves as a pure

resistor and the net reactance 1s zero.

As X; = 2 n fL. As frequency is changed from 0 to =, X; increases linearily and graph
of X, against f is straight line passing through origin. '

M&:T'%E,asfrequencyisdungedfmmﬂtuﬂ,xcreducﬂsmdtheguphaf}(c
against f is rectangular hyperbola. Mathematically sign of X; is opposite to X hence graph
of X Vs f is shown in the first quadrant while X Vs f is shown in the third quadrant.

At f = f, the value of X = X at this frequency.

As X = X; = X, the graph of X against f is shown in the Fig. 4.1.

I.cosé
1 |

|
z X, poreesnecs I
]

TRp—— — o B o

-—capa-:.il.iveaT—— Inductive —=

Resistive Resistive
Fig. 4.1 Characteristics of series resonance

For f < £, the X > X and net reactance X is capacitive while for f > f, the X; > X
and net reactance X is inductive.

NowZ=R+jX=R+j(Xp-Xc)butatf=£ X =Xc:and X = 0 hence the net
impedance Z= R which is purely resistive. So impedance is minimum and purely
resistive at series resonance. The graph of Z against f is also shown in the Fig. 4.1.
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Key Point: As impedance is minimum, the current 1 = VIZ is maximum at series
resonance.

Now power factor cos ¢=R/Z and at f = f, as Z = R, the power factor is unity and

at its maximum at series resonance. For f < £, it is leading in nature while for f > £, it is
lagging in nature.

Resonant Frequency
Let f, be the resonant frequency in Hz at which,

%= X
&L = mic
1
£y =
(k 4n? LC
1
£ = Hz
f 2n/LC
. w, = -—L—- rad/sec
L.e. T JEE

Bandwidth of Series R-L-C Circuit

At series resonance, current is maximum and impedance Z is minimum. Now power
consumed in a circuit is proportional to square of the current as P = I'R. So at series
resonance as current is maximum, power is also at its maximum ie. P,. The Fig. 4.2
shows the graph of current and power against frequency.

It can be observed that at two frequencies f; and f, the power is half of its maximum
value. These frequencies are called half power frequencies.

lm """""""" current
L0 WY 47 S S W W Half of
2 maximum

power

Sl o o i

N-‘-—--—--

~—— Bandwidth ——

The difference between the half power frequencies f; and f, at which power is half of
its maximum is called bandwidth of the series R-L-C circuit.

BW. =f, - f

www.Jntufastupdates.com 40



Expressions for Lower and Upper Cut-off Frequencies
The current in a series RLC circuit is given by the equation,

I=-‘z—l but Z=R+j Xy - X0
' Jm(m\,’__ %) =%
wC
At resonance, I, = % (maximum value) .. (2
and P, = 2R

. P, I2, .Y
At half power point, P =7R= —=| R

"
ng

I

a
‘s
%

Equating equations (1) and (2),
\4 \4

JR’ +(mL- &)z “ VIR

.’.JR’ +(mL- -L)z =J2R

wC

Rh[mL-i PR
wC] =
1)? _ p2
[mL _:] - R

1 _
oL- == = 1R ..(3)

From the equation (3) we can find two values of half power frequencies which are @,
and w, corresponding to f; and f,.

1
ml- e = +R - 8)
1
and  ol- o= = -R .. (5)
. (o +m,)L-[l+3_]l=u ... Adding equations (4) and (5)
w  w)C
() 1
(0, +w)L = o ® C
1
oo = e .. (6)
1
but @, = ﬁ
oo, = (o)

fif;, = (frj'l e (7)
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The equation (7) shows that the resonant frequency is the geometric mean of the

two half power frequencies.

ff- = 1.|| f] f]_

Subtracting equation (5) from equation (4) we get,

i)t -
m-m”“:’;ﬁ‘}-% « ¥
(@ - 0y) + (@~ @) = T
@-w) =}
ie. f-f = 5or
Thus BW. = -

The bandwidth is also denoted as,
B.W. = 2Af where

R

Af = ot

From Fig. 4.3 we can write,

as shown in the Fig. 4.3

.. (8)

.. Dividing both sides by L
1

. —— =LC
As b

- (9)

f] = fl’ "Af
and f, = f + Af
L o o s e o e e
]
1 |
B An=fonnee t Tabadadal =~===Half power
z : : |
'
.
| ) '
1 ) ]
) ) ]
L .l L f
0 T, T, A
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Quality Factor

The quality factor of R-L-C series circuit is the voltage magnification in the circuit at
resonance.
Voltage across L or C

Voltage magnification = Supply voltage

Now V. = Voltage across L =1, X; =1, @ L at resonance

and Ima% at resonance

Vo, L
R

A\ at resonance

Vo, L
Voltage magnification = -—5— = E'R-I:

This is nothing but quality factor Q.

-":'r_L butm:l
Q-R r

Jic

Qo
I
==
Ol

(o

— L — - —
and Q = W as BW.= (0, - o)

Example 1 : A RLC series circuit with a resistance of 10 Q, impedance of 0.2 H and a
capacitance of 40WF is supplied with a 100 V supply at variable frequency. Find the
following w.r.t the series resonant circuit :-
i) the frequency at resonance ii) the current iii) power iv) power factor v) voltage across R,
L, C at that time vi) quality factor of the circuit vii) half power points viii) phasor diagram.
Solution : The given values are, R=10Q,L=02H, C=40pF and V=100V
1

1
2nJLC  2x.J0.2x40x10-¢
56.2697 Hz

ii) I, = %:%:mA ... Current is maximum at resonance

i) £ =

iid) P, = I2 R = (10)* x 10 = 1000 W

iv) Power factor is unity, as impedance is purely resistive at resonance

v) Vg = I, R=10 x10=100 V
X, = 2nf L=2n x56.2697 x 0.2 = 70.7105 Q
Vy = I, X, =10x70.7105 = 707105 V -
and X = 1
2nf C

1
2n % 56.2697 x 40 x 10-%

70.7105
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Ve = 1, Xc = 707.105 V

ThusV, = Ve  at resonance
. _ ol 2nfL
wi) Q = K "R = 7.071
_ R _ 10 _ ik
vii) af = 41‘:[._41!)({].2_3:9?83
f, = f - Af = 56.2697 — 3.9788
= 52.2909 Hz 0 . -1
W
and f, = f + Af = 56.2697 + 3.9788 "
= 60.2485 Hz
viii) BW. = f, - f; = 60.2485 — 522909
= 7.9576 Hz Ve

Resonance in Parallel Circuit

Similar to a series a.c. circuit, there can be a resonance in parallel a.c. circuit. When the
power factor of a parallel a.c. circuit is unity i.e. the voltage and total current are in phase
at a particular frequency then the parallel circuit is said to be at resonance. The frequency
at which the parallel resonance occurs is called resonant frequency denoted as f, Hz.

4.3.1 Characteristics of Parallel Resonance
Consider a practical parallel circuit used

I AAAA LTI for the parallel resonance as shown in the
N~ Fig. 4.5.
o The one branch consists of resistance R in
1 series with inductor L. So it is series R-L
Ig c circuit with impedance Z;. The other branch
I is pure capacitive with a capacitor C. Both the
o\ branches are connected in parallel across a
\V'J' variable frequency constant voltage source.

The current drawn by inductive branch is
Fig. 4.5 Practical parallel circuit I, while drawn by capacitive branch is I..

I,_:-Z-Y: where Z;, = R +j X
\" 1
and lc=x—c Whel'ﬁxc=m

The current I; lags voltage V by angle ¢; which is decided by R and X while the

current I~ leads voltage V by 90°. The total current I is phasor addition of I} and I.. The
phasor diagram is shown in the Fig. 4.5 (a).

Fig. 4.5(a)
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For the parallel resonance V and I must be in phase. To achieve this unity p.f.
condition,

and | Ic=1I sin ¢,

From the impedance triangle of R-L series circuit we can write,

X
tﬂn#u,=~—]-é-'-fm5¢l. =z

N\

R

Fig. 4.5(b) Impedance triangle
As frequency is increased, X, = 27 f L increases due to which Z;, = \/R? + X} also
increases. Hence cos ¢; decreases and sin ¢; increases. As Z; increases, the current I; also
decreases.

At resonance f = f and I; cos ¢, is at its minimum. Thus at resonance current is
minimum while the total impedance of the circuit is maximum. As admittance is
reciprocal of impedance, as frequency is changed, admittance decreases and is minimum
at resonance. The three curves are shown in the Fig. 4.6 (a), (b) and (c).

Z Ik

i
i
i
I
I
I
I
I
I
I
i
T

(a) Impedance (b} Current {c) Admittance
Fig. 4.6 Characteristics of parallel resonance
Expression for Resonant Frequency

At resonance [ = I sin ¢
YooV X VK
Xe = Zy Zp T 7}
ZE = X X¢
2 2 I =
R:+(2nf, Ly = (2nf, L]x‘lnfrc as f = f
R?+(2nf, L)? = -E
@nf, 1)? = %-—Rz
2 . 1L _R
(2mf)* = IC T
(- L[ R
T 2m\|LC L
o R? 1
Thus if R is very small compared to L and C, L—zccrﬁ
f = 1 i
v 2aJLC ... Neglecting effect of R
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Dynamic Impedance at Resonance

The impedance offered by the parallel circuit at resonance is called dynamic
impedance denoted as Zj, This is maximum at resonance. As current drawn at resonance
is minimum, the parallel circuit at resonance is called rejector circuit. This indicates that it
rejects the unwanted frequencies and hence it is used as filter in radio receiver.

From I = I; sin ¢; we have seen that,

z: = =

I=

where Iy = -I{"—C-=D)mmicimpedm

Quality Factor of Parallel Circuit
The parallel circuit is used to magnify the current and hence known as current
resonance circuit.
The quality factor of the parallel circuit is defined as the current magnification in the
circuit at resonance.
The current magnification is defined as,
Current in the inductive branch _ I

> t magnification = & rent in supply at resonance 1

N

=0
Zy

e <<

_R—'C_IJT
= L RIT *4
c

&]

This is nothing but the quality factor at resonance.
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Example 2 : An inductive coil of resistance 10 Q and inductance 0.1 Henrys is
connected in parallel with a 150 pF capacitor to a variable frequency, 200 V supply. Find
the resonant frequency at which the total current taken from the supply is in phase with the
supply voltage. Also find the value of this current. Draw the phasor diagram.

Solution : The circuit is shown in the Fig. 4.7.

-V T
1
- 1
|
)
7
Fig. 4.7
The resonant frequency is,
g - L1 _R
r T 2ryLC 2
_ 1 1 _ (0)?
© 2mY0.1x150% 105  (0.1)?
= 37.8865 Hz
Now Z, = R+jX.=10+j (2=nf, L)
= 10 + j 23.805 = 25.82 £67.21° Q
\' 200 £ 0° o
\'% 20040° 200 £0° =
_ and lc_x_c_ 1 A_w_zsé_w-zusz-rmA
2nf, C
where Ze = 0-jXc=0-j28=28Z -90°Q

z, = el BLNCXBRLET
" Ze+2Z,  0-j28+10+j23.805

722.96 £~ 22.79°
10-]4.195

72296 L~-22.79
10844 £-22.79

= 66.67 Q pure resistive

- _ L ,
&= ~CR 71434
Ew-t."‘h..‘
I 0 Ta
150x10-¢ x10 \leqm
= 6667 Q Y
_ 0 R 200 N T.T45 A
I= Z, 66.67 3A
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Comparison of Resonant Circuits

Sr. No. Parameter Saeries Resonant Parallel Rasonant
1. Circuit I ] L
_._.-._m_m_
] L c
A | | S—
i 1 ke c
P
© 9
W
2. Type of circuit Purely resistive Purely resistive
3. Power factor Unity Unity
4, Impedance Minimum £ = R Dynamic but maximum
AR
RC
5. Frequency f= 1 f= 1
' 2nfiC * mJLC
6. Current =V =V
Maximum | =" Minimum | v
T. Magnification Voltage magnification " Current magnification
B. Quality factor ol _ o - 1JE
Q= aw Q= riE
a, Mature Acceptor Rejector
10. Practical used Radio circuits Impedance for matching,
of tunning circuit tuning, as a filter
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UNIT - IV

NETWORK THEOREMS

SUPERPOSITION THEOREM

It states that *in a linear network containing more than one independent source and dependent source,
the resultant current in any element is the algebraic sum of the currenis that would be produced by each
independent source acting alone, all the other independent sources heing represented meanwhile by their
respective internal resistances.”

The independent voltage sources are represented by their internal resistances 1f given or simply with zero
resistances, i.e., short circuits if internal resistances are not mentioned. The independent current sources are
represented by infinite resistances, 1.e., open circuits.

The dependent sources are not sources but dissipative components—hence they are active at all times. A
dependent source has zero value only when its control voltage or current is zero.

A linear network is one whose parameters are constant, i.¢., they do not change with voltage and current.
Explanation Consider the network shown in Fig. 3.1. Suppose we have to find current /, through
resistor R .

H 1 H‘:]

Fig. 3.1 Network to illustrate superposition thearem

The current flowing through resistor R, due to A, A3
constant voltage source F 1s found to be say f;{wilh AT AR X
proper direction), representing constant current source -
v A 1

with infinite resistance, i.c., open circuit.

The current flowing through resistor R, due to —‘7
constant current source / is found to be say /7 (with
proper direction), representing the constant voltage Fig. 3.2  When voltage source V is acting alone
source with zero resistance or short circuit.

The resultant current /; through resistor R, is found A4 Hs
by superposition theorem. WV MV

Iy =1 +17

Steps to be followed in Superposition Theorem

I. Find the current through the resistance when only
one independent source is acting, replacing all Fig. 3.3 When current source l'is acting alone
other independent sources by respective mternal
resistances.

2. Find the current through the resistance for each of the independent sources.

3. Find the resultant current through the resistance by the superposition theorem considering magnitude and
direction of each current.
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|| SETN NN Find the current through the 2 £2 resistor in Fig. 3.4.

50 2oV 20
AN L AN
a0y —— g‘lﬂﬂ 10V
Fig. 3.4
Solution
Step I When the 40 V source is acting alone (Fig. 3.5)
i 580 I 20
L "y o VAVAY,
40V T 10 a2
Fig. 3.5
By series parallel reduction technique (Fig. 3.6), N
40
54+ 1.67 40V —
From Fig. 3.5, by current-division rule,
I"'=6x 1o =5A(—=)
T 10+2 Fig. 3.6
Step II' When the 20 V source 1s acting alone (Fig. 3.7)
| 5Q 0V 20
—"\\V It AN
10 Q
Fig. 3.7
By series—parallel reduction technique (Fig. 3.8) j 50 20V
§ ; g.2.0), - Iy
2(_:' l AM ||
= =3A
3+ 1.67
From Fig. 3.7, by current-division rule,
u -
" =3x S25A(¢ ) ~25A () Fig. 3.8
10+2
Step 1l When the 10 V source is acting alone (Fig. 3.9)
50 20
ATAY ATAYAY
10V

§1ﬂﬂ

Fig. 3.9
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By series—parallel reduction technique (Fig. 3.10), I E&
333+2 ' p
L
Step IV By superposition theorem,
I=1"+1"+]1"=5-25+1.88=438A (—) Fig. 3.10

THEVENIN’S THEOREM

It states that “any two terminals of a network can be replaced by an equivalent voltage source and an
equivalent series resistance. The voltage source is the voltage across the two ferminals with load, if any,
removed. The series resistance is the resistance of the network measured between two terminals with load
removed and constant voltage source being replaced by its internal resistance {or if it is not given with
zera resistance, Le., short civeuit) and constant current source replaced by infinite vesistance, i.e., open
circuit.’

[ [ = S -
I Lo ' Arn .
| | | AL —0 F
| | Lo : L
I I |
I I |
| I | |
| | l_ o
e mam === = eereereeeremmm === I
(a) (b)
Fig. 3.109 Network illustrating Thevenin's theorem
Explanation Consider a simple network as shown in Fig. 3.110.
R A;
ATATAY ATATAY oA
[T — § A, g R,
OB
Fig. 3.110 Network
A, Rs
For finding load current through R, first remove the load 5y MVA—2A
resistor R, from the network and calculate open circuit voltage
V., across points A and B as shown in Fig. 3.111. v §R2 Vo
1/ —_ R2
™7 R 4R, 0B
For finding series resistance Ryy,, replace the voltage source Fig. 3.111 Calculation of V,,
by a short circuit and calculate resistance between points A4 and R, R,
B as shown in Fig. 3.112. AN/ AAN—0 A
RiR,
Rin = Ry + R+ Ry §H2 < Ry
Thevenin’s equivalent network is shown in Fig. 3.113. 0B
l; = _Vm Fig. 3.112 Calculation of R,
R+ R
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sources, Thevenin’s resistance Ry, is calculated as,

Fru D AL
Rpp = -
Tl f,w, —‘V 'rL

where [, is the short-circuit current which would flow in a 8
short circuit placed across the terminals A4 and 8. Dependent
sources are active at all times. They have zero values only when
the control voltage or current is zero. Ry, may be negative in

If the network contains both independent and dependent i MV A
Vi

Fig 3.113 Thevenin’s equivalent
network

some cases which indicates negative resistance region of the device, 1.e., as voltage increases, current
decreases in the region and vice-versa.
If the network contains only dependent sources then
P =10
f__\,. =0
For finding Ry, in such a network, a known voltage V is applied across the terminals 4 and £ and current
is calculated through the path 45.

I
Rpp = —
| ! A
or a known current source / is connected across the AAN oA
terminals 4 and B and voltage is calculated across the
terminals A and 5.
|4
R, = T
] . . . o B
Thevenin’s equivalent network for such a network 1s
shown in Fig. 3.114. Fig. 3.114 Thevenin’s equivalent network

Steps fo be Followed in Thevenin's Theorem

1. Remove the load resistance R .
2. Find the open circuit voltage I, across points A and B.
3. Find the resistance R, as seen from points 4 and 5,
4. Replace the network by a voltage source V. in series with resistance R .
5. Find the current through R, using Ohm’s law.
I = Vi
Rin + Ry,
u SETOACIEWTE  Find the current through the 2 £2 resistor in Fig. 3.115.
5 Q 20y 20
AN I AN
40V — §1G.§! 10V
Fig. 3.115
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Solution

50 2? v A B
. _ | v
Step I Calculation of V. (Fig. 3.116) PV | F/m2
Applying KVL to the mesh, "
100
40—51 —20-10/ =0 40V , § oV
151 =20
[=133A Fig. 3.116
Writing the V7, equation, 51 A B
A o Ay o
107 =V, +10=0 }
Vin =10/ +10 =10(1.33)+10 = 23.33 V oe
Step I1 Caleulation of R (Fig. 3.117)
Fig. 3.117
Ry =5]|10=3330Q 3330
ATAYAY A
Step 111 Calculation of /, (Fig. 3.118)
2333V —/— ) 21}
2333 f
I = - 438 A -
3.33+2 B
Fig. 3.118

NORTON’S THEOREM

It states that “any two terminals of a network can be replaced by an equivalent current source and an equivalent
parallel resistance.” The constant current is equal to the current which would flow in a short circuit placed across
the terminals. The parallel resistance is the resistance of the network when viewed from these open-circuited
terminals after all voltage and current sources have been removed and replaced by internal resistances,

' \R
: i |
MNetwork : G) c:: %F"N g A,
i Iy i
@ O
Fig. 3.251 Network illustrating Norton's thearem
Explanation Consider a simple network as shown in Fig.3.252
R, A
AA" A o A
| — g A, g A,
o B

Fig. 3.252 Network
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For finding load current through R; . first remove the load
resistor R; from the network and calculate short circuit
current /sc or [y which would flow in a short circuit placed
across terminals A and B as shown in Fig. 3.253.

For finding parallel resistance Ry ,replace the voltage
source by a short circuit and calculate resistance between
points A and B as shown in Fig. 3.254.

Norton’s equivalent network is shown in Fig.3.255.
Ry
P -
Ry + Ry
If the network contains both independent and dependent
sources, Norton's resistances R, is calculated as
I
Ry =
Iy

flf. =1r

where V., is the open-circuit voltage across terminals 4 and
B. If the network contains only dependent sources, then

Vin =0
.Irlr\.' = D

To find R | in such network, a known voltage I or current
[ is applied across the terminals A and B, and the current { or
the voltage V' is calculated respectively.

Norton’s equivalent network for such a network is shown in
Fig. 3.256.

Steps to be followed in Norton's Theorem

Find the short-circuit current /. or /..

ld o

- o

_ AuRy

" Ryt R

R, A,
AATAY ATATAY A
v g R, In
B
Fig. 3.253 C(Calculation of I,
R'I F‘Fg
AN AN oA
§ Hz —--— HN
o 8
Fig. 3.254 Calculation of R,
!L
w(d) S An A

Fig. 3.255 Norton's equivalent network

o4

oB

Fig. 3.256 Norton's equivalent network

Find the resistance R as seen from points /4 and B.
Replace the network by a current source 7, in parallel with resistance R, .
Find current through R: by current-division rule.
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“ ETNACEREN  Find the current through the 10 £2 resistor in Fig. 3.258.

80 12V

AA— |
20v -

gEﬂ gﬂ)ﬂ.
50

Fig. 3.261

80 12V
Solution T A II A
Step I Calculation of /, (Fig. 3.262) 20V ) i
Applying KVL to Mesh 1, ) ; 50 D »
51, +20-2(1, - 1,)=0 i) 5e2 I,
aanl 1
71 21, = 20 5
Applying KVL to Mesh 2, Fig. 3.262
=2y —-1)—-8l;-12=0 80 (ii)
Ll
2L +107, =12 WV
Solving Eqgs (1) and (11), 50 g gz o Y
{5 ==0.67A
Iv=1,=-06TA
Fig. 3.263
Step I Calculation of B (Fig. 3.263) 4
0
Ry =(5]/2)+8=943 Q
Step 111 Calculation of /, (Fig. 3.264) 0-67A CD g 943 0 g o
9.43 Al
[, =067x——=033A(T)
: 943+10 °B
Fig. 3.264

MAXIMUM POWER TRANSFER THEOREM

It states that “the maximum power ts delivered from a source to a load when the load resistance is equal to

the source resistance.’

Proof From Fig. 3.363, As

V ATAYAY

I =
R+ R,
R V— ) g A
V=R /

Power delivered to the load B, =P =1 R, = -
(Rs+ Rp)

To determine the value of R, for maximum power to be transferred
to the load,

Fig. 3.363 Network illustrating

maximum power transfer

P _y
dR,

thearem

pd ¥V’
dR;,  dR; (R, +R,)*
_PPIR + R )~ (2R )(R, + R
(R, + R, )*
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(Ry+ R Y =2 R (R, +R;)=0
RE+RZ+2R.R; —2R; R, —2R} =0
H.-,- = RI,

Henee, the maximum power will be transferred to the load when load resistance is equal to the source
resistance.

Steps to be followed in Maximum Power Transfer A,
Theorem AYATAY A
I. Remove the variable load resistor &, . \\
2. Find the open circuit voltage V' across points A and B. Vo — .‘/ Ry =P,
3. Find the resistance R as seen from points 4 and 5. I
4. Find the resistance £, for maximum power transfer. B

Ry = Ryy
' " Fig. 3.364 Thevenin's equivalent network
5. Find the maximum power (Fig. 3.364).

V1 Vo
!}- — —
Ry + R, 2Ry,
y2 7.2
Pm.u = ‘f.fz HF = |2 x Ji?'I'h. = th
4 H’I'h 4 IIII'El'h

|| Example ER YW Find the value of resistance R, in Fig. 3.365 for maximum power transfer and

calculate maximum power.

20 R
AVATAY %
3v— 24 —— 10V
6\
T AN
240}
Fig. 3.365
Solution
Step I Calculation of V| (Fig. 3.366) 20 A B
Applying KVL to the mesh, AT A o WV o
3-21-21-6=0 *

[=-075A sv— () 33%¢ — 10V

Writing the I, equation,

T A"
6+21 -V, -10=0 MV
20
iy =064+21-10=0+2(-0.753)-10=-535V
. . . .. Fig. 3.366
= 5.5 V(terminal Bispositive w.r.t 4)
o alculati ’ Yig 20 A B

Step Il Calculation of B (Fig. 3.367) A An, B

R =(2]12)+2=3Q
Step Il Calculation of 1, ; en
For maximum power transfer,

R =Ry, =3Q AN

Fig. 3.367 2%
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Step IV Calculation of P (Fig. 3.368) vy

4Ry, 4x3 55V

30

Fig. 3.368

Compensation Theorem
In circuit analysis, many times it is required to study the effect of change in
impedance in one of its branches on the corresponding voltages and currents of the
network. The compensation theorem provides a very simple way for studying such effects.
The statement of compensation theorem is as follows.
tatement :  In any linear network consisting of linear and bilateral impedances and active
sources, if the impedance Z of the branch carrying current I increases by 8Z, then the
increament of voltage or current in each branch of the network is that voltage or current that
would be produced by an opposing voltage source of value V-(=1.8Z) introduced in the altered
branch after replacing original sources by their internal impedances.

7.6.1 Explanation of Compensation Theorem

Consider a network shown in the Fig. 7.21.
Z;

£y
| — e
SO b 6D e
”

(a) (b)
Fig. 7.21

V is the voltage applied to the network. I is the current flowing through Z; and Z,.
Consider that impedance Z, increases by dZ . Due to this, the current in the circuit
changes to I’ as shown in the Fig. 7.21 (b).

Then the effect of change in impedance is the change in current which is given by,
al = I-I'
Now this current can be directly calculated by using the compensation theorem. First

meodify the branch of which impedance is changed, by connecting a voltage source V. of
value -8 Z. The new voltage source must be connected in the branch with proper polarity.

Then replace original active source i.e. voltage source V

Z,
Lt by its internal impedance as shown in the Fig. 7.22.
r—> , The voltage source introduced in modified branch,
2
ol
( % )Ve =152

V- is called compensation source with value [-6Z
where [ is current through impedance before
impedance of the branch is changed and 8Z is the
change in impedance.

Fig. 7.22
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Proof of Compensation Theorem
Consider a network shown in the Fig. 7.23.

Z

—
e

& 7

(@15

2,462
|
(a) (b)
Fig. 7.23
The current flowing in the circuit is given by,
Vv
[ = 737, w (1)

Consider that the impedance Z, changes by §Z , then the current changes to I’ as
shown in the Fig. 7.23 (b).

The current I’ is given by,
Vv

e Z, +(Z, +52) =@
The change in current due to change in impedance is given by,
8l = I-I
_ \i \4 \ \4

T ZiAZ;  Z,H(Z,482)  (Z41+42;) (2, +Z, +02)
V(Z«l +Zz +82)"'V(Z, "'Zz)
(Z,+Z,)(Z,+Z2,+d2)
VIZ, +Z,+82-2Z, - Z,]
(Z,+Z3) (Z, + 2, +82)
I A
T (Z,+Z) (Z,+2,+82)

[.6Z .
= @1z 57 ... from equation (1)
- Ve

ol = (Z,+Z,+82) ~ @)
z, Now consider that the branch is
— modified as shown in the Fig. 7.24 and
also original voltage source is short

Cr- 2452 circuited. Let the current in circuit be I"

Ve =152 Applying KVL to the loop,
~Z, 1" =(Z, 48Z) 1" +V = 0
Fig. 7.24
- (2-1 + z: +E‘Z}I" = —[E-Z

W [ E‘ 2 _ VC {4}

T (Z,+Z,+8Z) (Z,+Z,+87)

From equations (3) and (4), I"= 8l

Thus, compensation theorem is proved.

www.Jntufastupdates.com

58



mp Example 7.7 : Calculate change in current in the network shown in the Fig. 7.25 by
using compensation theorem when the reactance has changed to j35 Q.

300
+
100.£45° V '\,)
| j40 62

Fig. 7.25
Solution :  Applying KVL, we get,
_ 100£45° _ 100£45° o .ao
1= 3050 = s0z81r - 47T A
00
~ 1= (19798 - j0.2828) A . (1)
al

C\ j3sa Now the reactance has changed to j35.
Hence the current in network will also change

_"""'c = L82 to I". The change in the reactance is given by,
0Z=j40-35=j50Q - (2)

Fig. 7.25 (a)

Now the reactance is decreased. Modifying
the network by replacing voltage source by short circuit and introducing compensation
source Vi =1:8Z in the branch altered as shown in the Fig. 7.25(a).

The compensation source is given by,

vc = IE.Z
= (2£-8.13%)(j5) = (2£-8.13")(5£90°)
) Ve = 10£81.87°V w (3)
Thus, change in current is given by,
8 = Ve 1048187 0.2169..32.47° A

30+i35 ~ 46.0977 £49.4°

Substitution Theorem

In network analysis many times it is needed to replace an impedance branch by
another branch with different network elements without disturbing the voltages and
currents in the network. The substitution theorem provides the convenient method to get
the condition under which branch replacement is possible. The statement of substitution
theorem is as below.

Statement : In any network any branch of it may be replaced (substituted) by a branch with
different network elements without disturbing the voltages and currents in the entire network, if
the new branch has same set of terminal voltage and current as the original branch.

Explanation of Substitution Theorem
Consider a network shown in the Fig. 7.26. Let the current through branch AB be 1,4

and voltage across the branch A-B be V5.
The voltage across original branch AB is given by,

Vap = Zpp-Ippg +E w (1)
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Fig. 7.26

This branch may be
substituted by any other branch
in many other ways where the
branch voltage is given by

Vas = Zaplap + E - (2)

where Z',; and E’ are chosen
such that 1,; and V,; are not

changed.

Following are the important points ir the accordance with the application of the
substitution theorem :
1) The substitution theorem is applicable to both the types of the networks such as
linear and nonlinear.
2) If the substitution theorem is applied in non-linear network then a medified
network must have a unique solution. In linesr networw it has number of
solutions.

3) The substitution theorem is useful in proving other network theorems.

4) The substitution theorem is useful in analysis of a network having one non-linear
element.

mmp Example 7.8 : For the network shown in the Fig. /.27, substitute the branch A-B by
a) a voltage source b) a current source.

20 2Q
MW AMWW—A

24v<:) 40 20

Fig. 7.27

Solution : Let current through branch A-B be I,5.
Total resistance looking from source is given by
an = 2+E41|{2+2}}= 2+[4||4]= 4Q
- Total current 1; = %ﬂﬁﬁ

By current divider rule,
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. Voltage across branch A-B,
VM = Imx2=3x2=6\f

Therefore branch A-B may be substituted either by an independent voltage source of
value 6 V with the branch current of 3 A or by an independent current source of value
3 A with the branch wvoltage of 6 V. The two substitutions are as shown in the
Fig. 7.27 (a) and (b) and respectively.

20 20 20 20 p

M MW A AN %M——-H_Tr
A i

(a) (b)
Fig. 7.27

Millman's Theorem

It is possible to combine number of voltage sources or current sources into a single
equivalent voltage or current source, using Millman's theorem. The statement of the
Millman's theorem is,

Statement : If n voltage sources V|, V, ........... .V, having internal impedances (or series
impedances) Z,,Zq,.....c..cc.co.e.. 2, respectively, are in parallel, then these sources may be
replaced by a single voltage source of voltage V,, having a series impedance Z,, where V,, and
Zyy are given by,

1]
V.Y
VY, + VY4 4V Y, E Lk

VM = -
1 /5 T +Y, L
XY,
k=1
1 1
and Zm = Y, 4 Yy o +Y, =
Y
k=1
where Y)Y, ooy Y, are the admittances corresponding to the impedances
Zy\Zyyerernannes Zy

Consider n voltage sources in parallel as

shown in the Fig. 7.33.
Z L e
Let us convert each voltage source into
vy V LA an equivalent current source. For source 1,

..... B - \";
Fig. 7.33 'z,

1
=V Y as Y =5
Similarly for the remaining sources we can write,

L = MY, L =V Y, ..., =VY,

where Y,.Y,,..........Y, are the admittances to be connected in parallel. Hence circuit
reduces to,

......... o A

@ [ D ] O

Fig. 7.33 (fa}
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Hence the effective current source across the terminals A-B is,

]

| L+0 4 +1, e (1)

and Yy = [+, +onns +Y, e (2)

This is because admittances in parallel get added to each other. Hence circuit reduces
to, as shown in the Fig. 7.34.

o A A
Zn
w® [Jv
'
o B B
Fig. 7.34 Fig. 7.34 (a)
Converting this equivalent current source into the voltage source we get,
|
vV, = M
M ?M
as Zy = ]
o ™ g
v
Vu = Iy Zy
Substituting I,, and Y,, from equations (1) and (2),
1
Vu = @+ +os + I"}.(‘ﬁ*ﬂ*m‘*?ﬂ]
v
but tl=z—’l=\r,\q, L=VY,,..I,=V, Y,
V. = VY +V Y, +..+V, Y,
M Y, +Y,+..+ Y,
2 = Lo 1
M= Y, Y+, +..+7Y,

mmp Example 7.10 : Use Millman'’s theorem to find the current through the 10 Q resistance
in the circuit of Fig. 7.35.

2V 5Q
B

_e v, 12Q

12V¢ 4Q

MWW
10Q
Fig. 7.35

Solution : From the given network we can write,
V,=12V,Z,=4QV,=48V,Z,=12Q V,=2V,Z,=5Q

Y, = 7 mho, Y, = 2 mho, Y; = 1 mho

According to Millman's theorem, the equivalent voltage source and impedance across
10 Q is given by,

1 1
2 = LAY, 1 1.1
i'12°5
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1 1 1
v = V,Y] +V2Y2+V3Y3 = 12X-4-+48Xﬁ+22)(§
M Y, + Y, + Y, 05333
= 21375V
Vnm . . . .
Zn The equivalent is shown in the Fig. 7.35 (a).
1.875Q V
21.375V Loo = 7—es
M +10
l’h_—)
b AN ? 21.375 18 A
100 S 1875+10
Fig. 7.35 (a)

Tellegan's Theorem

The Tellegan's theorem is valid for any lumped network which may be linear or
nonlinear, active or passive, time varying or time invariant. The statement of the theorem
is as below :

Statement : In an arbitrary lumped network, the algebraic sum of the instantaneous
powers in all the branches, at any instant is zero. All the branch currents and the voltages in
that network must satisfy Kirchhoff's laws. In other words, it can be stated as, in a given
network, the algebraic sum of the powers delivered by all the sources is equal to the algebraic
sum of the powers absorbed by all the elements.

Mathematically this theorem can be expressed as,

b
EU;. I = 0

km]

where b is the number of branches in a nefwork.

Explanation of Tellegan's Theorem

PartA Part® Let the network is divided into two
Source 1 parts. The part A with 'n' active energy
Source 2 - Al sources and second part B with all the

! E?rsnm passive elements. Then the power
Soutcan _ delivered by n sources of part A must
be equal to the sum of the power
Power delivered =  Power absorbed absorbed (dissipated or stored) by the
elements of part B. This is shown in the

Fig. 7.36 Fig. 7.36.

mmp Example 7.11 : For the network shown in the Fig. 7.37 verify Tellegan's theorem.

10Q 100
—MWA—T— MWW

22V 5Q = 33V

Fig. 7.37
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Solution : Assuming loop currents as shown in the Fig. 7.37 (a).

Fig. 7.37 (a)

Applying KVL to loop A-B-E-F-A,

]
=]

-101, -51, +5I, +22
1511 -512 =22 [1}

]

Applying KVL to loop B-C-D-E-B,
=101, = 33-51, +3I, =

51, -151, = 33 v (2)

Solving equations (1) and (2) simultaneously,

Il
I

0.825 A
-1925 A

Current flowing through loop2 is negative which indicates that assumed direction of I,
is exactly opposite to the actual direction. Hence I, flows in anticlockwise direction.
~I; = 1925 A in anticlockwise direction.

Current through 10 Q resistor between nodes A and B is given by,

i,=ll=0.825A ....... fromAtOB

Current flowing through 5 Q resistor is given by
i, = I+, =(0.825) + (0.1925) =275 A ... From B to E

Current flowing through 10 Q resistor between nodes B and C is given by,

i3

I, =1925 A ...... from C to B.

Total power delivered by sources,

Pdelivemd

(I;)(22) +(1,)(33)
(0.825) (22) + (1.925) (33)
81.675 W

Total power absorbed by the elements

Pobsorbed

P delivered

(17 x10) +(i3 x5)+(i3 x10)
[(0.825)% x10]+[(2.75)2 x5]+[(1.925)2 x10]
81.675 W

Pacidiad e Hence Tellegan's theorem is proved.
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Reciprocity Theorem

Reciprocity Theorem states that — In any branch of a network or circuit, the current due to a single source
of voltage (V) in the network is equal to the current through that branch in which the source was originally
placed when the source is again put in the branch in which the current was originally obtained. This
theorem is used in the bilateral linear network which consists bilateral components.

In simple words, we can state the reciprocity theorem as when the places of voltage and current source in
any network are interchanged the amount or magnitude of current and voltage flowing in the circuit
remains the same. This theorem is used for solving many DC and AC network which have many
applications in electromagnetism electronics. Their circuit does not have any time varying element.

Explanation of Reciprocity Theorem

The location of the voltage source and the current source may be interchanged without a change in current.
However, the polarity of the voltage source should be identical with the direction of the branch current in
each position.

The Reciprocity Theorem is explained with the help of the circuit diagram shown below

v P 0™ P O

The various resistances R1, Rz, Rz is connected in the circuit diagram above with a voltage source (V) and a
current source (I). It is clear from the figure above that the voltage source and current sources are
interchanged for solving the network with the help of Reciprocity Theorem.

The limitation of this theorem is that it is applicable only to single source networks and not in the multi-
source network. The network where reciprocity theorem is applied should be linear and consist of resistors,
inductors, capacitors and coupled circuits. The circuit should not have any time-varying elements.

Steps for Solving a Network Utilizing Reciprocity Theorem

Step 1 - Firstly, select the branches between which reciprocity has to be established.

Step 2 — The current in the branch is obtained using any conventional network analysis method.
Step 3 — The voltage source is interchanged between the branch which is selected.

Step 4 — The current in the branch where the voltage source was existing earlier is calculated.

Step 5 — Now, it is seen that the current obtained in the previous connection, i.e., in step 2 and the current
which is calculated when the source is interchanged, i.e., in step 4 are identical to each other.
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Problems-14

Verify the Reciprocity Theorem for the network shown in the figure using
current source and a voltmeter. All the values are in ohm.

VNV —— VW

1% 3 5%

Solution

Using a current source and a voltmeter,

Let, e1, e; be node voltages, v; be the voltmeter reading.

1 20 2 40 3
N —e— AN
iy 10 :m§ 50

By KCL,
Atnode (1) = 3¢ —e, — 2i; =0 (i)

At node (2) = —6¢, +13¢e, —3v, = 0 (ii)
At node (3) 9v, = Se, (iii)

From (ii) = —6¢, +13><%v, -3y, =0
= —bg +[¥—3)v, =0
102 17
= 6(—,’1 +TU1 =g :?V]
, 17 9 :
From (i) = 3x?v1 —3SM =2i

(&)
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Interchanging the positions of the current source and the voltmeter,

Now, let v5 be the voltmeter reading

(\Dmé sng Eﬂg Csz

By KCL,
Atnode (1) = 3v, =g, (IV)

At node (2) = —6v, +13e, —3e; =0
= _61"2 +13X3U2 —3€3={}

== €3 = l 11"2 (V:I

At node (3) = S5e; — Se, +4ey — 20i, =0

= 2032 =9€3 _SEZ =9X11U_-,: -5X3V2 =841"2
b _(21
- (Vz]_( 5 ](B)

From equations (A) and (B), Reciprocity theorem is proved.
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